
- •Гоу впо «Кировская государственная медицинская академия» Методы статистического анализа в медицине
- •Раздел 1
- •Статистический метод позволяет
- •Медицинская статистика делится на два основных раздела:
- •Статистика здоровья населения изучает
- •Статистика здравоохранения изучает
- •2.3 Виды статистической совокупности
- •Понятие о репрезентативности
- •2.4.1 Способы формирования выборочной совокупности
- •Необходимая численность выборки
- •Раздел 3 организация статистического исследования
- •3.1 Первый этап — составление программы и плана статистического исследования.
- •3.1.1 Цель и задачи исследования
- •3.1.2 Программа сбора материала
- •3.1.3. Программа разработки полученных данных
- •3.1. 3.1. Виды статистических таблиц
- •3.1.3.2 Виды статистического наблюдения
- •- Сплошное статистическое исследование, - несплошное статистическое исследование.
- •Число жителей (наличное, в тыс. На 1 января текущего года)
- •3.6 Контрольные вопросы к разделам 1, 2, 3
- •Раздел 4 относительные величины
- •4.1 Экстенсивные показатели
- •4.2 Интенсивные показатели
- •4.3. Показатели соотношения
- •4.4 Показатели наглядности
- •4.5 Динамические ряды
- •4.5.1 Типы динамических рядов
- •4.5 2 Выравнивание уровней динамических рядов
- •4.5.2.1 Укрупнение интервалов
- •4.5.2.2 Вычисление групповой средней
- •4.5.2.3 Расчет скользящей средней
- •4.5. 3. Показатели динамического ряда
- •Методики расчета показателей
- •Раздел 5 средние величины
- •5.1 Вариационный ряд и методика его составления
- •5.2 Виды средних величин, методика их вычисления
- •Вычисляется средняя арифметическая простая по формуле:
- •Расчет средней арифметической способом моментов проводится по формуле:
- •5.3 Методы оценки разнообразия признака в статистической совокупности
- •1. Характеризующие границы совокупности:
- •Характеризующие внутреннюю структуру совокупности:
- •5. 3.1 Критерии, характеризующие границы совокупности (лимит, амплитуда)
- •5.3.2 Критерии, характеризующие внутреннюю структуру совокупности
- •5.3.2.1 Расчет среднеквадратического отклонения
- •1) При среднеарифметическом способе расчета применяется формула:
- •5.3.2.2 Расчет коэффициента вариации
- •Раздел 6
- •6.1 Определение ошибки репрезентативности
- •Примеры определения средних ошибок средних и относительных величин
- •6.2 Определение доверительных границ генеральной совокупности.
- •6.3 Оценка достоверности разницы результатов исследования
- •6.4 Типичные ошибки, допускаемые при применении методов оценки достоверности результатов исследования
- •6.5 Задачи эталоны
- •6.6 Контрольные вопросы
- •6.7 Задачи для самостоятельного решения
- •Раздел 8 методы стандартизации
- •Этапы прямого метода стандартизации.
- •8.1. Прямой метод стандартизации
- •8.2 Косвенный метод стандартизации
- •8.3 Обратный метод стандартизации
- •8.4 Контрольные вопросы
- •Раздел 9 корреляционный анализ
- •Вычисление корреляционной зависимости методом квадратов
- •1. Его ошибку по формуле
- •2. Критерий достоверности (t):
- •9.3 Контрольные вопросы
- •9.4 Задачи для самостоятельного решения
6.6 Контрольные вопросы
Что такое средняя ошибка средней арифметической, ее определение и применение?
Как определяется достоверность различий средних величин, для каких целей?
Как рассчитать ошибку репрезентативности?
Как определяются доверительные границы для генеральной совокупности?
Как определяется достоверность разности относительных показателей?
Что такое «вероятность безошибочного прогноза»?
Что означает понятие «нулевая гипотеза»?
Можно ли оценить величину хи квадрат без таблицы? Каковы критерии оценки?
6.7 Задачи для самостоятельного решения
Требуется оценить достоверность разности между двумя относительными и средними величинами.
Вариант I В детской больнице А из 1600 оперированных умерло 16 больных, в детской больнице Б из 1800 оперированных умерло 24 больных.
Вариант 2 При изучении заболеваемости по обращаемости в районе Н. с численностью населения 250000 человек, по полу получены следующие данные: показатели заболеваемости у мужчин составили 504,7 на 1000 населения, у женщин — 529,4 на 1000 населения.
Вариант 3 Показатели послеоперационной летальности в двух больницах (р! и Р2), где распределение больных по видам операций было примерно одинаковым, составили
в больнице А — 2,0% (m1 = ± 0,3%)
в больнице Б — 1,5% (m2 = ± 0,2%)
Вариант 4 Частота кариеса зубов среди населения, использующего питьевую воду с пониженным содержанием фтора, составила 380 случаев на 1000 человек (m =± 10%о), в то время как пораженность кариесом зубов населения, потребляющего воду с нормальным содержанием фтора, составляет 200 случаев на 1000 населения (m = ± 15%о).
Вариант 5 Максимальное артериальное давление у студентов до сдачи экзаменов в среднем составило 127,2 мм рт. ст. (m1= ± 3,0 мм рт. ст), после сдачи экзамена 117,0 мм рт. ст. (m2= ±4,0 мм рт. ст.) Можно ли на основании этих данных считать, что действительно до сдачи экзамена у студентов отмечается некоторое повышение максимального артериального давления?
Вариант б В стационаре лечилось 40 больных с анемией. До лечения препаратами железа среднее количество гемоглобина в крови было 92,3 ± 2,2 г/л. После лечения препаратами железа среднее количество гемоглобина в крови стало 124,7 ±5,6 г/л.
Можно ли на основании этих данных считать, что действительно после лечения больных анемией препаратами железа отмечается повышение количества гемоглобина в крови?
Вариант 7 При изучении частоты пульса у детей 3-х лет двух детских садов обнаружено, что в детском саду А частота пульса в среднем составила 80,0 ± 2,0 ударов в минуту, а в детском саду Б — 78,0 ± 2,0 ударов в минуту.
Можно ли на основании этих данных говорить о большей частоте пульса у детей детского сада А?
Раздел 8 методы стандартизации
В практической и научно-практической деятельности врачи любой специальности при изучении какого-либо явления, закономерностей и особенностей его распространения в различных совокупностях используют сравнение интенсивных показателей. Это относится, например, к сравнению показателей заболеваемости населения двух районов города, или производственного травматизма среди рабочих двух цехов, или летальности в двух больницах и т.д. При этом важно не только констатировать больший или меньший уровень одного из показателей, но и выяснить причины этой разницы. И прежде всего надо иметь в виду, что нередко состав совокупностей, для которых рассчитаны сравниваемые показатели, отличаются по какому-либо признаку (пол), возрасту, профессии, стажу работы и др.), что в свою очередь, может повлиять на различие показателей. Установить это и позволяет метод стандартизации.
Метод стандартизации применяется при сравнении интенсивных показателей, рассчитанных для совокупностей (групп), отличающихся по своему составу по какому-то признаку (полу, возрасту, профессии и т.д.).
Сущность метода стандартизации состоит в том, что он позволяет устранить возможное влияние различий в составе совокупностей по какому-либо признаку на величину сравниваемых интенсивных показателей.
Это достигается путем условного уравнивания составов этих совокупностей по данному признаку и расчета при этом стандартизованных показателей.
Стандартизованные показатели — это условные величины, не дающие представления об истинном размере явления, а указывающие лишь на то, какова была бы величина сравниваемых интенсивных показателей, если бы они были бы вычислены для однородных по своему составу (по данному признаку) совокупностей.
Существуют различные способы расчета стандартизованных показателей: прямой, косвенный, обратный. Наиболее распространенным является прямой метод стандартизации.