
- •Гоу впо «Кировская государственная медицинская академия» Методы статистического анализа в медицине
- •Раздел 1
- •Статистический метод позволяет
- •Медицинская статистика делится на два основных раздела:
- •Статистика здоровья населения изучает
- •Статистика здравоохранения изучает
- •2.3 Виды статистической совокупности
- •Понятие о репрезентативности
- •2.4.1 Способы формирования выборочной совокупности
- •Необходимая численность выборки
- •Раздел 3 организация статистического исследования
- •3.1 Первый этап — составление программы и плана статистического исследования.
- •3.1.1 Цель и задачи исследования
- •3.1.2 Программа сбора материала
- •3.1.3. Программа разработки полученных данных
- •3.1. 3.1. Виды статистических таблиц
- •3.1.3.2 Виды статистического наблюдения
- •- Сплошное статистическое исследование, - несплошное статистическое исследование.
- •Число жителей (наличное, в тыс. На 1 января текущего года)
- •3.6 Контрольные вопросы к разделам 1, 2, 3
- •Раздел 4 относительные величины
- •4.1 Экстенсивные показатели
- •4.2 Интенсивные показатели
- •4.3. Показатели соотношения
- •4.4 Показатели наглядности
- •4.5 Динамические ряды
- •4.5.1 Типы динамических рядов
- •4.5 2 Выравнивание уровней динамических рядов
- •4.5.2.1 Укрупнение интервалов
- •4.5.2.2 Вычисление групповой средней
- •4.5.2.3 Расчет скользящей средней
- •4.5. 3. Показатели динамического ряда
- •Методики расчета показателей
- •Раздел 5 средние величины
- •5.1 Вариационный ряд и методика его составления
- •5.2 Виды средних величин, методика их вычисления
- •Вычисляется средняя арифметическая простая по формуле:
- •Расчет средней арифметической способом моментов проводится по формуле:
- •5.3 Методы оценки разнообразия признака в статистической совокупности
- •1. Характеризующие границы совокупности:
- •Характеризующие внутреннюю структуру совокупности:
- •5. 3.1 Критерии, характеризующие границы совокупности (лимит, амплитуда)
- •5.3.2 Критерии, характеризующие внутреннюю структуру совокупности
- •5.3.2.1 Расчет среднеквадратического отклонения
- •1) При среднеарифметическом способе расчета применяется формула:
- •5.3.2.2 Расчет коэффициента вариации
- •Раздел 6
- •6.1 Определение ошибки репрезентативности
- •Примеры определения средних ошибок средних и относительных величин
- •6.2 Определение доверительных границ генеральной совокупности.
- •6.3 Оценка достоверности разницы результатов исследования
- •6.4 Типичные ошибки, допускаемые при применении методов оценки достоверности результатов исследования
- •6.5 Задачи эталоны
- •6.6 Контрольные вопросы
- •6.7 Задачи для самостоятельного решения
- •Раздел 8 методы стандартизации
- •Этапы прямого метода стандартизации.
- •8.1. Прямой метод стандартизации
- •8.2 Косвенный метод стандартизации
- •8.3 Обратный метод стандартизации
- •8.4 Контрольные вопросы
- •Раздел 9 корреляционный анализ
- •Вычисление корреляционной зависимости методом квадратов
- •1. Его ошибку по формуле
- •2. Критерий достоверности (t):
- •9.3 Контрольные вопросы
- •9.4 Задачи для самостоятельного решения
6.2 Определение доверительных границ генеральной совокупности.
Определяя для средней арифметической (или относительной) величины два крайних значения: минимально возможное и максимально возможное, находят пределы, в которых может быть искомая величина генерального параметра. Эти пределы называют доверительными границами.
Доверительные границы — это то максимальное и минимальное значение, в пределах которого, при заданной степени вероятности безошибочного прогноза, может колебаться искомая средняя величина генерального параметра.
Доверительные границы средней арифметической в генеральной совокупности определяют по формуле:
Мген = Мвыб ± tmМ
Доверительные границы относительной величины в генеральной совокупности определяют по следующей формуле:
Рген = Рвыб ± tmР
где Мген и Рген — значения средней и относительной величин, полученных для генеральной совокупности; Мвы6 и Рвы6 — значения средней и относительной величин, полученных для выборочной совокупности; тМ и тР — ошибки репрезентативности выборочных величин; t — доверительный критерий (критерий точности, который устанавливают при планировании исследования; tm — доверительный интервал; tm=∆, где ∆ предельная ошибка показателя, полученного при выборочном исследовании.
Размеры предельной ошибки (∆) зависят от коэффициента t, который избирает сам исследователь, исходя из необходимости получить результат с определенной степенью точности.
Величина критерия t связана определенными отношениями с вероятностью безошибочного прогноза — р и численностью наблюдений в выборочной совокупности.
Зависимость доверительного критерия t от степени вероятности безошибочного прогноза (при n>30)
Степень вероятности безошибочного прогноза в % |
Доверительный критерий - t |
95,0 |
2 |
99,0 |
3 |
Для большинства медико-биологических и социальных исследований достоверными считаются доверительные границы, установленные с вероятностью безошибочного прогноза р = 95% и более. Чтобы найти критерий t при числе наблюдений n<30, необходимо воспользоваться специальной таблицей, в которой слева показано число наблюдений без единицы (n-1), а сверху (р) — степень вероятности безошибочного прогноза.
Значение критерия t для трех степеней вероятности (по Н А. Плохинскому)
|
Р |
|
Р |
||||
n=n— 1 |
95% |
99% |
99,9% |
n=n— 1 |
95% |
99% |
99,9% |
1 |
12,7 |
63,7 |
37,0 |
10 |
2,2 |
3,2 |
4,6 |
2 |
4,3 |
9,9 |
31,6 |
11 |
2,2 |
3,1 |
4,4 |
3 |
3,2 |
5,8 |
12,9 |
12 |
2,2 |
3,1 |
4,3 |
4 |
2,8 |
4,6 |
8,6 |
13 |
2,2 |
3,0 |
4,1 |
5 |
2,6 |
4,0 |
6,9 |
14—15 |
2Д |
3,0 |
4,1 |
6 |
2,4 |
3,7 |
6,0 |
16—17 |
2,1 |
2,9 |
4,0 |
7 |
2,4 |
3,5 |
5,3 |
18—20 |
2Д |
2,9 |
3,9 |
8 |
2,3 |
3,4 |
5,0 |
21—2,4 |
2,1 |
2,8 |
3,8 |
9 |
2,3 |
3,3 |
4,8 |
25—29 |
2,0 |
2,8 |
3,7 |
При определении доверительных границ сначала надо решить вопрос о том, с какой степенью вероятности безошибочного прогноза необходимо представить доверительные границы средней или относительной величины. Избрав определенную степень вероятности, соответственно этому находят величину доверительного критерия t при данном числе наблюдений. Таким образом, доверительный критерий t устанавливается заранее, при планировании исследования.
Любой параметр (средняя величина или относительная величина) может оцениваться с учетом доверительных границ, полученных при расчете.
Для ознакомления с методикой определения доверительных границ Мвыб и Рвы6 рекомендуется записать исходные данные и провести расчеты в определенной логической последовательности:
Пример 1. Определить доверительные границы среднего уровня пепсина у больных гипертиреозом с 95% вероятностью безошибочного прогноза (р = 95%).
Условие задачи: n=49
Мвы6 = 1 г%
mм = ±0,05 г%
р = 95% (следовательно при n = 49 t = 2).
Определяем доверительные границы средней величины в генеральной совокупности.
Формула Мген = Мвыб ± tmM
Решение : Мген = 1 г% ± 2 х 0,05 г%
Мген не более 1 г%+0,1 г%= 1,1 г%,
Мген не менее 1 г%—0,1 г% =0,9 г%.
Вывод: Установлено с вероятностью безошибочного прогноза (р = 95%>, что средний уровень пепсина в генеральной совокупности у больных с гипертиреозом не превышает 1,1 г% и не ниже 0,9 г%.
Пример 2. Определить доверительные границы показателя частоты дистрофии пародонта у больных с абсцессом легкого с вероятностью безошибочного прогноза р = 95%.
Условие задачи:
n=110
Рвы6 =40%
mp = ±4,7%
р =95% (следовательно, при n=110 t=2).
Определяем доверительные границы относительного показателя в генеральной совокупности.
Формула: Рген = Рвыб ± tmp,
Решение: Pген = 49% ±2 х 4,7%
Рген не более 40% + 9,4 = 49,4%
Рген не менее 40% -9,4 = 30,6%
Вывод: Установлено с 95% вероятностью безошибочного прогноза (р = 95%), что дистрофические изменения пародонта в генеральной совокупности наблюдаются у больных с абсцессом легкого не чаще, чем в 49,4%, и не реже, чем в 30,6% случаев.
Как видно, доверительные границы зависят от размера доверительного интервала (tm=∆).
Анализ доверительных интервалов указывает, что при заданных степенях вероятности (р) и n >30 t имеет неизменную величину и при этом доверительный интервал зависит от величины ошибки репрезентативности (mM или mР).
С уменьшением величины ошибки суживаются доверительные границы средних и относительных величин, полученных на выборочной совокупности, т. е. уточняются результаты исследования, которые приближаются к соответствующим величинам генеральной совокупности.
Если ошибка большая, то получают для выборочной величины большие доверительные границы, которые могут противоречить логической оценке искомой величины в генеральной совокупности.
Например, при определенном режиме питания и тренировок спортсменов средняя годовая прибавка массы тела у 80 спортсменов составила Мвы6=1 кг; mM= ±0,8 кг. При степени вероятности р = 95,0% и t = 2 Мген = 1 кг ± 2 х 0,8 кг. Следовательно:
Мген не более + 2,6 кг,
Мген не менее - 0,6 кг.
Эти противоречивые данные означают, что при указанном режиме спортсмены могут дать большую среднюю прибавку массы тела (до +2,6 кг), но могут и убавить массу тела в среднем на 600 г. Таким образом, остается по-прежнему невыясненным вопрос о степени влияния данного режима спортсменов на массу их тела.
В подобном случае надо искать резервы сокращения размаха доверительных границ в размере величины ошибки репрезентативности. Прежде всего надо проанализировать уровень разнообразия признака по среднему квадратическому отклонению () с позиций однородности группы. Необходимо также иметь в виду, что большое влияние на величину средней ошибки, а следовательно, и на доверительные границы оказывает численность наблюдений.
Доверительные границы Мвыб и Рвыб зависят не только от средних ошибок этих величин (mм или mР), но и от избранной исследователем степени вероятности безошибочного прогноза (р). При большой степени вероятности размах доверительных границ увеличивается.