
- •Гоу впо «Кировская государственная медицинская академия» Методы статистического анализа в медицине
- •Раздел 1
- •Статистический метод позволяет
- •Медицинская статистика делится на два основных раздела:
- •Статистика здоровья населения изучает
- •Статистика здравоохранения изучает
- •2.3 Виды статистической совокупности
- •Понятие о репрезентативности
- •2.4.1 Способы формирования выборочной совокупности
- •Необходимая численность выборки
- •Раздел 3 организация статистического исследования
- •3.1 Первый этап — составление программы и плана статистического исследования.
- •3.1.1 Цель и задачи исследования
- •3.1.2 Программа сбора материала
- •3.1.3. Программа разработки полученных данных
- •3.1. 3.1. Виды статистических таблиц
- •3.1.3.2 Виды статистического наблюдения
- •- Сплошное статистическое исследование, - несплошное статистическое исследование.
- •Число жителей (наличное, в тыс. На 1 января текущего года)
- •3.6 Контрольные вопросы к разделам 1, 2, 3
- •Раздел 4 относительные величины
- •4.1 Экстенсивные показатели
- •4.2 Интенсивные показатели
- •4.3. Показатели соотношения
- •4.4 Показатели наглядности
- •4.5 Динамические ряды
- •4.5.1 Типы динамических рядов
- •4.5 2 Выравнивание уровней динамических рядов
- •4.5.2.1 Укрупнение интервалов
- •4.5.2.2 Вычисление групповой средней
- •4.5.2.3 Расчет скользящей средней
- •4.5. 3. Показатели динамического ряда
- •Методики расчета показателей
- •Раздел 5 средние величины
- •5.1 Вариационный ряд и методика его составления
- •5.2 Виды средних величин, методика их вычисления
- •Вычисляется средняя арифметическая простая по формуле:
- •Расчет средней арифметической способом моментов проводится по формуле:
- •5.3 Методы оценки разнообразия признака в статистической совокупности
- •1. Характеризующие границы совокупности:
- •Характеризующие внутреннюю структуру совокупности:
- •5. 3.1 Критерии, характеризующие границы совокупности (лимит, амплитуда)
- •5.3.2 Критерии, характеризующие внутреннюю структуру совокупности
- •5.3.2.1 Расчет среднеквадратического отклонения
- •1) При среднеарифметическом способе расчета применяется формула:
- •5.3.2.2 Расчет коэффициента вариации
- •Раздел 6
- •6.1 Определение ошибки репрезентативности
- •Примеры определения средних ошибок средних и относительных величин
- •6.2 Определение доверительных границ генеральной совокупности.
- •6.3 Оценка достоверности разницы результатов исследования
- •6.4 Типичные ошибки, допускаемые при применении методов оценки достоверности результатов исследования
- •6.5 Задачи эталоны
- •6.6 Контрольные вопросы
- •6.7 Задачи для самостоятельного решения
- •Раздел 8 методы стандартизации
- •Этапы прямого метода стандартизации.
- •8.1. Прямой метод стандартизации
- •8.2 Косвенный метод стандартизации
- •8.3 Обратный метод стандартизации
- •8.4 Контрольные вопросы
- •Раздел 9 корреляционный анализ
- •Вычисление корреляционной зависимости методом квадратов
- •1. Его ошибку по формуле
- •2. Критерий достоверности (t):
- •9.3 Контрольные вопросы
- •9.4 Задачи для самостоятельного решения
4.5 Динамические ряды
Для анализа изменения явления во времени (динамика явления) используются динамические ряды.
Динамическим рядом называется совокупность однородных статистических величин, показывающих изменения какого-либо явления на протяжении определенного промежутка времен./
Динамический ряд может состоять из абсолютных или производных величин — относительных чисел и средних.
|
Динамические ряды |
|||
I. Виды динамических рядов |
Простой |
Сложный |
Моментный |
Интервальный |
|
Динамические ряды |
|||
II. Способы выравнивания динамических рядов |
Укрупнение интервалов |
Вычисление групповой средней |
Вычисление скользящей средней |
|
|
Динамические ряды |
|||
III. Показатели динамического ряда |
Абсолютный прирост |
Темп прироста |
Значение 1% прироста |
Темп роста |
Числа динамического ряда принято называть уровнями ряда. Различают два основных типа динамических рядов в зависимости от того, из какого рода чисел состоит ряд.
4.5.1 Типы динамических рядов
Ряды могут быть простыми (состоят из абсолютных величин) и сложными (состоят из относительных или средних величин).
Простой динамический ряд может быть двух видов: моментный и интервальный
Моментный, состоит из величин, характеризующих размеры явления на определенное время (например, численность населения РФ на конец соответствующего года).
Интервальным, состоит из чисел, характеризующих величину явления не на какой-либо момент, а за определенный интервал времени (количество родившихся в РФ за год, количество умерших за год и т. п.).
4.5 2 Выравнивание уровней динамических рядов
Динамический ряд не всегда состоит из уровней, последовательно изменяющихся в сторону снижения или увеличения. Нередко уровни в динамическом ряду носят скачкообразный характер, имеют значительные колебания, что затрудняет возможность проследить основную закономерность, свойственную явлению в наблюдаемый период.
В этих случаях для выявления общей динамической тенденции рекомендуется произвести выравнивание ряда
Выделяют следующие способы выравнивания динамического ряда. укрупнение интервалов, вычисление групповой средней, вычисление скользящей средней и т. п.
Однако, следует осторожно применять метод выравнивания, его следует употреблять только после глубокого и всестороннего анализа причин, обусловивших колебания этих уровней. Механическое выравнивание может искусственно сгладить уровни и завуалировать причинно-следственные связи.
4.5.2.1 Укрупнение интервалов
Укрупнение интервалов — применяется, когда явление в интегральном ряду выражено в абсолютных величинах, уровни которых суммируются по более крупным периодам. Применение возможно при кратном числе периодов. Например, зная помесячное число обращений по поводу того или иного заболевания, можно укрупнить период и анализировать поквартально. Укрупнение периодов может выявить сезонные колебания, определенные закономерности.
Пример: Сезонные колебания заболевания ангиной в населенном пункте Н.
Месяцы |
||||||||||||
I |
II |
III |
IV |
V |
VI |
VII |
VIII |
IX |
X |
XI |
XII |
Всего |
120 |
190 |
130 |
380 |
230 |
280 |
530 |
380 |
390 |
230 |
140 |
250 |
3250 |
440 |
890 |
1300 |
620 |
3250 |
Как видно из таблицы, помесячные числа заболеваний ангиной то увеличиваются, то уменьшаются. После укрупнения интервалов по кварталам года выявляется определенная закономерность: наибольшее число заболеваний приходится на летне-осенний период.