
- •Isbn 978-5-7944-1210-9 © зао «прогноз», 2008 содержание
- •Предисловие
- •1.Введение Историческая справка
- •Эволюция термина
- •Некоторые сведения об истории возникновения эконометрики
- •Выделение эконометрики в самостоятельную науку
- •Место эконометрики в системе экономических знаний
- •Примеры эконометрических моделей Модель кривой спроса
- •Цена автомобиля на вторичном рынке
- •Цена жилья на вторичном рынке
- •Наполняемость федерального бюджета
- •Производственная функция Кобба-Дугласа
- •Цели и методология эконометрического исследования
- •2. Необходимые сведения из теории вероятностей и математической статистики
- •Основные сведения Основные определения
- •Основные числовые характеристики абсолютно непрерывной случайной величины
- •Статистические точечные оценки числовых характеристик
- •Некоторые свойства статистических оценок (определения)
- •Общий подход к построению интервальных статистических оценок параметров
- •Наиболее часто используемые в эконометрике распределения
- •Критические значения распределения случайной величины
- •Интервальные оценки параметров нормального распределения по результатам наблюдений Доверительный интервал для , если известно
- •Доверительный интервал для , если неизвестно
- •Доверительный интервал для при известном значении
- •Доверительный интервал для при неизвестном
- •Проверка статистических гипотез
- •Правила проверки гипотез относительно параметров нормального распределения
- •Проверка гипотезы относительно при известном
- •Проверка гипотезы относительно a при неизвестном
- •Проверка гипотезы относительно при неизвестном
- •3. Линейная парная регрессия Постановка задачи
- •Идентификация модели (нахождение точечных оценок параметров)
- •Необходимые и достаточные условия минимума суммы квадратов остатков. Система нормальных уравнений
- •Свойства оценок мнк
- •Условия Гаусса–Маркова
- •Линейность оценок
- •Несмещенность оценок
- •Состоятельность оценок
- •Эффективность оценок
- •Интервальные оценки коэффициентов парной регрессии, полученные с помощью мнк
- •Теоретические интервальные оценки
- •Практические интервальные оценки
- •Оценка качества модели линейной парной регрессии
- •Оценка значимости коэффициента линейной парной регрессии (t - тест)
- •Оценка качества модели линейной парной регрессии в целом (f-тест)
- •Прогнозирование с помощью модели линейной парной регрессии, оценка качества прогноза Точечный прогноз
- •Интервальный прогноз
- •Геометрическая интерпретация точности прогноза
- •Геометрический подход к нахождению коэффициентов линейной регрессии
- •4. Линейная множественная регрессия
- •Описание модели линейной множественной регрессии
- •Идентификация модели
- •Геометрическая интерпретация метода наименьших квадратов
- •Свойства точечных оценок мнк
- •Оценка модели линейной множественной регрессии в целом. Коэффициент детерминации
- •Геометрическая иллюстрация зависимости точности прогноза от расстояния до средней точки
- •Некоторые обобщения мнк Обобщенный мнк
- •Взвешенный мнк
- •5. Некоторые проблемы, возникающие при практическом применении мнк
- •Проблема мультиколлинеарности: понятие, обнаружение, способы преодоления проблемы Понятие мультиколлинеарности
- •Методы обнаружения мультиколлинеарности
- •Методы устранения мультиколлинеарности
- •Проблема гетероскедастичности: понятие, тесты на гетероскедастичность, способы преодоления проблемы Понятие гетероскедастичности
- •Тесты на наличие в модели гетероскедастичности
- •Методы преодоления гетероскедастичности
- •Проблема автокорреляции (ак): понятие, методы обнаружения, способы преодоления проблемы, авторегрессионное преобразование первого порядка Понятие автокорреляции
- •Методы обнаружения автокорреляции
- •Методы преодоления автокорреляции
- •Авторегрессионное преобразование первого порядка
- •6. Системы одновременных уравнений. Косвенный мнк. Двухшаговый мнк
- •Кейнсианская модель формирования доходов
- •Косвенный мнк
- •Проблема идентифицируемости модели
- •Двухшаговый мнк
- •Трехшаговый мнк
- •Общий вид системы одновременных уравнений
- •7. Фиктивные переменные. Применение фиктивных переменных для исследования устойчивости коэффициентов регрессии. Тест чоу Фиктивные переменные (качественные переменные)
- •Использование качественных переменных для анализа устойчивости коэффициентов регрессии. Тест Чоу
- •8. Нелинейные регрессионные модели
- •Модели, нелинейные по переменным
- •Модели, нелинейные по параметрам
- •Общий вид модели наблюдений в случае существенно нелинейной модели
- •Сравнение регрессионных моделей с различными функциональными формами. Тест Бокса–Кокса
- •9. Временные ряды Определение временного ряда. Основные понятия
- •Метод экспоненциального сглаживания
- •Список литературы
- •Словарь
- •Предметный указатель
- •Приложения
- •614990, Г. Пермь, ул. Букирева, 15
- •614990, Г. Пермь, ул. Букирева, 15
5. Некоторые проблемы, возникающие при практическом применении мнк
В предыдущих разделах курса была изучена классическая линейная модель регрессии, приведены оценки параметров модели и правила проверки статистических гипотез о регрессии. Однако не были затронуты некоторые проблемы, связанные с практическим использованием модели множественной регрессии. К их числу относятся, например, мультиколлинеарность, гетероскедастичность, автокорреляция. Причинам возникновения указанных проблем и способам их преодоления посвящена эта глава.
Проблема мультиколлинеарности: понятие, обнаружение, способы преодоления проблемы Понятие мультиколлинеарности
Под мультиколлинеарностью понимается высокая взаимная коррелированность объясняющих переменных. Мультиколлине-арность может проявляться в функциональной (явной) и стохастической (скрытой) формах.
При функциональной форме мультиколлинеарности существует линейная функциональная связь между объясняющими переменными. В этом случае матрица особенная (вырожденная), так как содержит линейно зависимые векторы-столбцы и ее определитель равен нулю.
В экономических исследованиях мультиколлинеарность чаще проявляется в стохастической форме, когда между хотя бы двумя объясняющими переменными существует тесная корреляционная связь. Матрица в этом случае является неособенной, но ее определитель очень мал.
В
то же время вектор оценок
и его ковариационная матрица в соответствии
с формулами (4.17)
и (4.25)
линейно зависят от обратной матрицы
,
а значит, их элементы обратно пропорциональны
величине определителя. В результате
получаются значительные средние
квадратические отклонения (стандартные
ошибки) оценок коэффициентов регрессии
.
Оценки становятся очень чувствительными к незначительному изменению результатов наблюдений и объема выборки. Уравнения регрессии в этом случае, как правило, не имеют реального смысла, так как некоторые из его коэффициентов могут иметь неправильные с точки зрения экономической теории знаки и неоправданно большие значения [6].
Методы обнаружения мультиколлинеарности
Точных количественных критериев для определения наличия или отсутствия мультиколлинеарности не существует. Тем не менее имеются некоторые эвристические подходы к ее выявлению:
1)
Один из таких подходов заключается в
анализе корреляционной матрицы для
объясняющих переменных
и выявлении пар переменных, имеющих
высокие по абсолютной величине значения
коэффициентов корреляции (обычно больше
0,8). Если такие переменные существуют,
то говорят о мультиколлинеарности между
ними.
2) Полезно также находить множественные коэффициенты детерминации между одной из объясняющих переменных и некоторой группой из них. Наличие высокого коэффициента детерминации (обычно больше 0,6) может свидетельствовать о мультиколлинеарности.
3)
Другой подход состоит в исследовании
матрицы
.
Если определитель матрицы
либо
ее минимальное собственное значение
близки к нулю (например, одного порядка
с накапливающимися ошибками вычислений),
то это говорит о наличии
мультиколлинеарности.
О том же может свидетельствовать и
значительное отклонение максимального
собственного значения
матрицы
от ее минимального собственного значения
[6].