
- •1 Основы программной инженерии 6
- •2 Процессы жизненного цикла программного средства 33
- •3 Инструменты и методы программной инженерии 184
- •4 Качество и эффективность в программной инженерии 193
- •Введение
- •1Основы программной инженерии
- •1.1Кризисы программирования и возникновение программной инженерии
- •1.2Программная инженерия и сущность инженерного подхода к созданию программного обеспечения
- •1.3Системная инженерия программного обеспечения
- •1.4Управление жизненным циклом программных средств
- •1.4.1Понятие жизненного цикла
- •1.4.2Масштабы программных средств
- •1.4.3Классификация процессов жизненного цикла по исо/мэк 12207
- •1.4.4Стадии разработки программных средств по еспд
- •1.4.5Типичная схема управления процессом создания программного обеспечения
- •1.5Модели жизненного цикла
- •1.5.1Каскадная (водопадная) модель
- •1.5.2Итеративная и инкрементальная модель – эволюционный подход
- •1.5.3Спиральная модель
- •2Процессы жизненного цикла программного средства
- •2.1Управление требованиями к программному обеспечению
- •2.1.1Программные требования
- •2.1.1.1Пирамида требований
- •2.1.1.2Характеристики программных требований
- •2.1.2Процесс управления требованиями
- •2.1.3Извлечение требований
- •2.1.4Анализ программных требований
- •2.1.5Документирование требований
- •2.1.6Проверка требований (верификация и аттестация)
- •2.1.7Измерение программных требований
- •2.2Проектирование программных средств
- •2.2.1Принципы проектирования
- •2.2.2Структура и архитектура программного обеспечения
- •2.2.2.1Архитектурные структуры и точки зрения
- •2.2.2.2Архитектурные стили
- •2.2.2.3Шаблоны проектирования
- •2.2.2.4Семейства программ и фреймворков
- •2.2.3Анализ качества и оценка программного дизайна
- •2.2.3.1Атрибуты качества
- •2.2.3.2Анализ качества и техники оценки
- •2.2.3.3Измерения
- •2.2.4Нотации проектирования
- •2.2.4.1Структурные описания
- •2.2.4.2Поведенческие (динамические) описания
- •2.2.5Подходы и методы проектирования программного обеспечения
- •2.2.5.1Общие подходы
- •2.3Использование uml в программной инженерии
- •2.3.1Основные компоненты uml
- •2.3.2Диаграмма вариантов использования
- •2.3.3Диаграмма классов
- •2.3.4Диаграмма состояний
- •2.3.5Диаграмма деятельности
- •2.3.6Диаграмма последовательности
- •2.3.7Диаграмма кооперации
- •2.3.8Диаграмма компонентов
- •2.3.9Диаграмма развертывания
- •2.4Тестирование программного обеспечения
- •2.4.1Основы тестирования
- •2.4.2Уровни тестирования
- •2.4.2.1Над чем производятся тесты
- •2.4.2.2Цели тестирования
- •2.4.3Техники тестирования
- •3.1 Техники, базирующиеся на интуиции и опыте инженера (Based on the software engineer’s intuition and experience)
- •3.2 Техники, базирующиеся на спецификации (Specification-based techniques)
- •3.3 Техники, ориентированные на код (Code-based techniques)
- •3.4 Тестирование, ориентированное на дефекты (Fault-based techniques)
- •3.5 Техники, базирующиеся на условиях использования (Usage-based techniques)
- •3.6 Техники, базирующиеся на природе приложения (Techniques based on the nature of the application)
- •3.7 Выбор и комбинация различных техник (Selecting and combining techniques)
- •4.1 Оценка программ в процессе тестирования (Evaluation of the program under test, ieee 982.1-98)
- •2.4.4.2Оценка выполненных тестов
- •2.4.5Процесс тестирования
- •2.4.5.1Практические соображения
- •2.4.5.2Тестовые работы
- •2.5Сопровождение программного обеспечения
- •2.5.1Основы сопровождения программного обеспечения
- •2.5.1.1Определения и терминология
- •2.5.1.2Природа сопровождения
- •2.5.1.3Потребность в сопровождении
- •2.5.1.4Приоритет стоимости сопровождения
- •2.5.1.5Эволюция программного обеспечения
- •2.5.1.6Категории сопровождения
- •2.5.2Ключевые вопросы сопровождения программного обеспечения
- •2.5.2.1Технические вопросы
- •2.5.2.2Оценка стоимости сопровождения
- •2.5.2.3Измерения в сопровождении программного обеспечения
- •2.5.3Процесс сопровождения
- •2.5.3.1Процессы сопровождения
- •2.5.3.2Работы по сопровождению
- •2.5.4Техники сопровождения
- •2.5.4.1Понимание программных систем
- •2.5.4.2Реинжиниринг
- •2.5.4.3Обратный инжиниринг
- •2.6Конфигурационное управление
- •2.6.1Управление конфигурационным процессом
- •2.6.1.1Организационный контекст управления конфигурацией по
- •2.6.1.2Ограничения и правила управления конфигурацией по
- •2.6.1.3Планирование при управлении конфигурацией по
- •2.6.1.4План конфигурационного управления
- •2.6.1.5Контроль выполнения процесса управления конфигурацией по
- •2.6.2Идентификация программных конфигураций
- •2.6.2.1Идентификация элементов, требующих контроля
- •2.6.2.2Программная библиотека
- •2.6.3Контроль программных конфигураций
- •2.6.3.1Предложение, оценка и утверждение изменений
- •2.6.3.2Реализация изменений
- •2.6.3.3Отклонения и отказ от изменений
- •2.6.4Учет статусов конфигураций
- •2.6.4.1Информация о статусе конфигураций
- •2.6.4.2Отчетность по статусу конфигураций
- •2.6.5Аудит конфигураций
- •2.6.5.1Функциональный аудит программных конфигураций
- •2.6.5.2Физический аудит программных конфигураций
- •2.6.5.3Внутренние аудиты базовых линий
- •2.6.6Управление выпуском и поставкой
- •2.6.6.1Сборка программного обеспечения
- •2.6.6.2Управление выпуском программного обеспечения
- •3Инструменты и методы программной инженерии
- •3.1Инструменты
- •3.1.1Инструменты работы с требованиями
- •3.1.2Инструменты проектирования и конструирования
- •3.1.3Инструменты тестирования
- •3.1.4Инструменты сопровождения
- •3.1.5Инструменты конфигурационного управления
- •3.1.6Инструменты управления инженерной деятельностью
- •3.1.7Инструменты поддержки процессов
- •3.1.8Инструменты обеспечения качества
- •3.2Методы
- •3.2.1Эвристические методы
- •3.2.2Формальные методы
- •3.2.3Методы прототипирования
- •4Качество и эффективность в программной инженерии
- •4.1Обеспечение качества программного обеспечения
- •4.1.1Качество программного продукта
- •4.1.2Культура и этика программной инженерии
- •4.1.3Значение и стоимость качества
- •4.1.4Повышение качества пс с использованием процессного подхода
- •4.1.5Показатели качества программных средств
- •4.1.6Количественная оценка качества программного обеспечения
- •4.2Модели качества процессов конструирования
- •4.2.1Качество процессов
- •4.2.4Прочие подходы
- •4.3Процессы управления качеством программного обеспечения
- •4.3.1Подтверждение качества программного обеспечения
- •4.3.2Проверка (верификация) и аттестация
- •4.3.3Оценка и аудит
- •4.3.4Характеристика дефектов
- •4.3.5Методы управления качеством программного обеспечения
- •4.4Стандартизация качества программного обеспечения
- •4.4.1Стандарты в сфере программной инженерии
- •4.4.2Стандартизация программных продуктов в еспд
- •4.4.3Виды стандартных программных документов
- •4.4.4Действующие международные стандарты в сфере разработки программных средств и информационных технологий
- •4.5Документирование программных средств
- •4.6Сертификация программных средств
- •4.6.1Правовые акты по сертификации программных продуктов
- •4.6.2Сертификация пс
- •4.6.3Перечень объектов, подлежащих сертификации и их характеристики
- •Заключение Библиография
1.4Управление жизненным циклом программных средств
1.4.1Понятие жизненного цикла
Жизненный цикл (ЖЦ) программного средства (ПС) определяется как период времени, который начинается с момента принятия решения о необходимости создания ПС и заканчивается в момент его полного изъятия из эксплуатации. Такой подход соответствует закону жизненной кривой теории систем. ПС обычно являются компонентами жизненного цикла технических систем, но по своей природе значительно отличаются от технических изделий, поэтому их жизненный цикл имеет характерные особенности, по сравнению с другими техническими объектами.
Типовая модель процессов жизненного цикла сложной системы начинается с концепции идеи системы или потребности в ней, охватывает проектирование, разработку, применение и сопровождение системы, и заканчивается снятием системы с эксплуатации. Программные средства служат для выполнения определенных функций систем на компьютерах. Модель жизненного цикла системы обычно разделяют на последовательные периоды реализации — стадии или этапы. Каждый подобный период включает основные реализуемые в нем процессы, работы и задачи, при завершении которых может потребоваться переход к следующему периоду реализации. Общую модель жизненного цикла сложной системы обычно разделяют на следующие основные этапы с последующей адаптацией каждого из них в модели жизненного цикла конкретной системы:
определение потребностей;
исследование и описание основных концепций;
проектирование и разработка;
испытания системы;
создание и производство;
распространение и продажа;
эксплуатация;
сопровождение и мониторинг;
снятие с эксплуатации (утилизация).
1.4.2Масштабы программных средств
По особенностям и свойствам жизненного цикла программ их целесообразно делить на ряд классов и категорий, из которых наиболее различающимися являются два крупных класса – малые и большие.
Первый класс составляют относительно небольшие программы, создаваемые одиночками или небольшими коллективами (3–5) специалистов, которые:
создаются преимущественно для получения конкретных результатов автоматизации научных исследований или для анализа относительно простых процессов самими разработчиками программ;
не предназначены для массового тиражирования и распространения как программного продукта на рынке, их оценивают качественно и интуитивно преимущественно как “художественные произведения”;
не имеют конкретного независимого заказчика-потребителя, определяющего требования к программам и их финансирование;
не ограничиваются заказчиком допустимой стоимостью, трудоемкостью и сроками их создания, требованиями заданного качества и документирования;
не подлежат независимому тестированию, гарантированию качества и/или сертификации.
Для таких, а также для многих других видов относительно не сложных программ, нет необходимости в регламентировании их жизненного цикла, в длительном применении и сопровождении множества версий, в формализации и применении профилей стандартов и сертификации качества программ. Их разработчики не знают и не применяют регламентирующих, нормативных документов, вследствие чего жизненный цикл таких изделий имеет не предсказуемый характер по структуре, содержанию, качеству и стоимости основных процессов “творчества”.
Второй класс составляют крупномасштабные комплексы программ для сложных систем управления и обработки информации, оформляемые в виде программных продуктов с гарантированным качеством, и отличаются следующими особенностями и свойствами их жизненного цикла:
большая размерность, высокая трудоемкость и стоимость создания таких комплексов программ определяют необходимость тщательного анализа экономической эффективности всего их жизненного цикла и возможной конкурентоспособности на рынке;
от заказчика, финансирующего проект программного средства и/или базы данных, разработчикам необходимо получать квалифицированные конкретные требования к функциям и характеристикам проекта и продукта, соответствующие выделенному финансированию и квалификации исполнителей проекта;
для организации и координации деятельности специалистов-разработчиков при наличии единой, крупной целевой задачи, создания и совершенствования программного продукта, необходимы квалифицированные менеджеры проектов;
в проектах таких сложных программных средств и баз данных с множеством различных, функциональных компонентов, участвуют специалисты разной квалификации и специализации, от которых требуется высокая ответственность за качество результатов деятельности каждого из них;
от разработчиков проектов требуются гарантии высокого качества, надежности функционирования и безопасности применения компонентов и поставляемых программных продуктов, в которые не допустимо прямое вмешательство заказчика и пользователей для изменений, не предусмотренных эксплуатационной документацией разработчиков;
необходимо применять индустриальные, регламентированные стандартами процессы, этапы и документы, а также методы, методики и комплексы средства автоматизации, технологии обеспечения жизненного цикла комплексов программ.
Такие крупномасштабные комплексы программ являются компонентами систем, реализующими обычно их основные, функциональные свойства, увеличивающими сложность и создающими предпосылки для последующих изменений их жизненного цикла. Реализация ЖЦ, методологии управления и изменения ПС зависит от многих факторов, от персонала, технических, организационных и договорных требований и сложности проекта. Множество текущих состояний и модификаций компонентов сложных ПС менеджерам необходимо упорядочивать, контролировать их развитие и применение участниками проекта. Организованное, контролируемое и методичное отслеживание динамики изменений в жизненном цикле программ и данных, их слаженная разработка при строгом учете и контроле каждого изменения, является основой эффективного, поступательного развития каждой крупной системы методами программной инженерии.
Существует множество моделей процессов жизненного цикла систем и программных средств, но три из них в международных стандартах обычно квалифицируются как фундаментальные: каскадная; инкрементная; эволюционная. Каждая из указанных моделей может быть использована самостоятельно или скомбинирована с другими для создания гибридной модели жизненного цикла конкретного проекта. При этом конкретную модель жизненного цикла системы или ПС следует выбирать так, чтобы процессы и задачи были связаны между собой, и определены их взаимосвязи с предшествующими процессами, видами деятельности и задачами.