
- •1 Основы программной инженерии 6
- •2 Процессы жизненного цикла программного средства 33
- •3 Инструменты и методы программной инженерии 184
- •4 Качество и эффективность в программной инженерии 193
- •Введение
- •1Основы программной инженерии
- •1.1Кризисы программирования и возникновение программной инженерии
- •1.2Программная инженерия и сущность инженерного подхода к созданию программного обеспечения
- •1.3Системная инженерия программного обеспечения
- •1.4Управление жизненным циклом программных средств
- •1.4.1Понятие жизненного цикла
- •1.4.2Масштабы программных средств
- •1.4.3Классификация процессов жизненного цикла по исо/мэк 12207
- •1.4.4Стадии разработки программных средств по еспд
- •1.4.5Типичная схема управления процессом создания программного обеспечения
- •1.5Модели жизненного цикла
- •1.5.1Каскадная (водопадная) модель
- •1.5.2Итеративная и инкрементальная модель – эволюционный подход
- •1.5.3Спиральная модель
- •2Процессы жизненного цикла программного средства
- •2.1Управление требованиями к программному обеспечению
- •2.1.1Программные требования
- •2.1.1.1Пирамида требований
- •2.1.1.2Характеристики программных требований
- •2.1.2Процесс управления требованиями
- •2.1.3Извлечение требований
- •2.1.4Анализ программных требований
- •2.1.5Документирование требований
- •2.1.6Проверка требований (верификация и аттестация)
- •2.1.7Измерение программных требований
- •2.2Проектирование программных средств
- •2.2.1Принципы проектирования
- •2.2.2Структура и архитектура программного обеспечения
- •2.2.2.1Архитектурные структуры и точки зрения
- •2.2.2.2Архитектурные стили
- •2.2.2.3Шаблоны проектирования
- •2.2.2.4Семейства программ и фреймворков
- •2.2.3Анализ качества и оценка программного дизайна
- •2.2.3.1Атрибуты качества
- •2.2.3.2Анализ качества и техники оценки
- •2.2.3.3Измерения
- •2.2.4Нотации проектирования
- •2.2.4.1Структурные описания
- •2.2.4.2Поведенческие (динамические) описания
- •2.2.5Подходы и методы проектирования программного обеспечения
- •2.2.5.1Общие подходы
- •2.3Использование uml в программной инженерии
- •2.3.1Основные компоненты uml
- •2.3.2Диаграмма вариантов использования
- •2.3.3Диаграмма классов
- •2.3.4Диаграмма состояний
- •2.3.5Диаграмма деятельности
- •2.3.6Диаграмма последовательности
- •2.3.7Диаграмма кооперации
- •2.3.8Диаграмма компонентов
- •2.3.9Диаграмма развертывания
- •2.4Тестирование программного обеспечения
- •2.4.1Основы тестирования
- •2.4.2Уровни тестирования
- •2.4.2.1Над чем производятся тесты
- •2.4.2.2Цели тестирования
- •2.4.3Техники тестирования
- •3.1 Техники, базирующиеся на интуиции и опыте инженера (Based on the software engineer’s intuition and experience)
- •3.2 Техники, базирующиеся на спецификации (Specification-based techniques)
- •3.3 Техники, ориентированные на код (Code-based techniques)
- •3.4 Тестирование, ориентированное на дефекты (Fault-based techniques)
- •3.5 Техники, базирующиеся на условиях использования (Usage-based techniques)
- •3.6 Техники, базирующиеся на природе приложения (Techniques based on the nature of the application)
- •3.7 Выбор и комбинация различных техник (Selecting and combining techniques)
- •4.1 Оценка программ в процессе тестирования (Evaluation of the program under test, ieee 982.1-98)
- •2.4.4.2Оценка выполненных тестов
- •2.4.5Процесс тестирования
- •2.4.5.1Практические соображения
- •2.4.5.2Тестовые работы
- •2.5Сопровождение программного обеспечения
- •2.5.1Основы сопровождения программного обеспечения
- •2.5.1.1Определения и терминология
- •2.5.1.2Природа сопровождения
- •2.5.1.3Потребность в сопровождении
- •2.5.1.4Приоритет стоимости сопровождения
- •2.5.1.5Эволюция программного обеспечения
- •2.5.1.6Категории сопровождения
- •2.5.2Ключевые вопросы сопровождения программного обеспечения
- •2.5.2.1Технические вопросы
- •2.5.2.2Оценка стоимости сопровождения
- •2.5.2.3Измерения в сопровождении программного обеспечения
- •2.5.3Процесс сопровождения
- •2.5.3.1Процессы сопровождения
- •2.5.3.2Работы по сопровождению
- •2.5.4Техники сопровождения
- •2.5.4.1Понимание программных систем
- •2.5.4.2Реинжиниринг
- •2.5.4.3Обратный инжиниринг
- •2.6Конфигурационное управление
- •2.6.1Управление конфигурационным процессом
- •2.6.1.1Организационный контекст управления конфигурацией по
- •2.6.1.2Ограничения и правила управления конфигурацией по
- •2.6.1.3Планирование при управлении конфигурацией по
- •2.6.1.4План конфигурационного управления
- •2.6.1.5Контроль выполнения процесса управления конфигурацией по
- •2.6.2Идентификация программных конфигураций
- •2.6.2.1Идентификация элементов, требующих контроля
- •2.6.2.2Программная библиотека
- •2.6.3Контроль программных конфигураций
- •2.6.3.1Предложение, оценка и утверждение изменений
- •2.6.3.2Реализация изменений
- •2.6.3.3Отклонения и отказ от изменений
- •2.6.4Учет статусов конфигураций
- •2.6.4.1Информация о статусе конфигураций
- •2.6.4.2Отчетность по статусу конфигураций
- •2.6.5Аудит конфигураций
- •2.6.5.1Функциональный аудит программных конфигураций
- •2.6.5.2Физический аудит программных конфигураций
- •2.6.5.3Внутренние аудиты базовых линий
- •2.6.6Управление выпуском и поставкой
- •2.6.6.1Сборка программного обеспечения
- •2.6.6.2Управление выпуском программного обеспечения
- •3Инструменты и методы программной инженерии
- •3.1Инструменты
- •3.1.1Инструменты работы с требованиями
- •3.1.2Инструменты проектирования и конструирования
- •3.1.3Инструменты тестирования
- •3.1.4Инструменты сопровождения
- •3.1.5Инструменты конфигурационного управления
- •3.1.6Инструменты управления инженерной деятельностью
- •3.1.7Инструменты поддержки процессов
- •3.1.8Инструменты обеспечения качества
- •3.2Методы
- •3.2.1Эвристические методы
- •3.2.2Формальные методы
- •3.2.3Методы прототипирования
- •4Качество и эффективность в программной инженерии
- •4.1Обеспечение качества программного обеспечения
- •4.1.1Качество программного продукта
- •4.1.2Культура и этика программной инженерии
- •4.1.3Значение и стоимость качества
- •4.1.4Повышение качества пс с использованием процессного подхода
- •4.1.5Показатели качества программных средств
- •4.1.6Количественная оценка качества программного обеспечения
- •4.2Модели качества процессов конструирования
- •4.2.1Качество процессов
- •4.2.4Прочие подходы
- •4.3Процессы управления качеством программного обеспечения
- •4.3.1Подтверждение качества программного обеспечения
- •4.3.2Проверка (верификация) и аттестация
- •4.3.3Оценка и аудит
- •4.3.4Характеристика дефектов
- •4.3.5Методы управления качеством программного обеспечения
- •4.4Стандартизация качества программного обеспечения
- •4.4.1Стандарты в сфере программной инженерии
- •4.4.2Стандартизация программных продуктов в еспд
- •4.4.3Виды стандартных программных документов
- •4.4.4Действующие международные стандарты в сфере разработки программных средств и информационных технологий
- •4.5Документирование программных средств
- •4.6Сертификация программных средств
- •4.6.1Правовые акты по сертификации программных продуктов
- •4.6.2Сертификация пс
- •4.6.3Перечень объектов, подлежащих сертификации и их характеристики
- •Заключение Библиография
2.4.4.2Оценка выполненных тестов
4.2.1 Метрики покрытия/глубины тестирования (Coverage/thoroughness measures)
Критерии “адекватности” тестирования, в ряде случаев, требуют систематического выполнения тестов для определенных набора элементов программы, задаваемых ее архитектурой или спецификацией. Соответствующие метрики позволяют оценить степень охвата характеристик системы (например, процент различных тестируемых параметров производительности) и глубину их детализации (например, случайное тестирование параметров производительности или с учетом граничных значений и т.п.). Такие метрики помогают прогнозировать вероятностное достижение заданных параметров качества системы.
4.2.2 Введение искусственных дефектов (Fault seeding)
“Своими руками?! Никогда! ...” – такова, обычно, первая реакция на идею искусственного внесения дефектов, например, в программный код. На практике, этот подход помогает классифицировать возможные ошибки и следующие за ними сбои, применяя в дальнейшем полученные результаты для моделирования (пусть, часто, и интуитивного) возможных причин реальных сбоев, обнаруженных в процессе тестирования.
Безусловно, данная техника должна использоваться с максимальной осторожностью опытными специалистами, хорошо представляющими общую архитектуру тестируемой программной системы и разбирающимеся во её внутренних связях.
4.2.3 Оценка мутаций (Mutation score)
Получаемое в процессе тестирования мутаций (см. выше 3.4.2) отношение “убитых” к общему числу сгенерированных мутантов помогает измерить эффективность выполняемых тестов. В силу специфики такой техники тестирования, количественные оценки мутаций имеют практическое значение только для определенных типов систем.
4.2.4 Сравнение и относительная эффективность различных техник тестирования (Comparison and relative effectiveness of different techniques)
Различные исследования в области тестирования связаны с попытками сравнения (с точки зрения достигаемого качества продукта) разных подходов к тестированию. Когда мы говорим об “эффективности” тестирования надо чётко договориться, что именно мы подразумеваем под эффективностью, желательно, в количественном выражении. Возможные варианты интерпретации этого понятия – число тестов (данной техники), необходимых для обнаружения первого дефекта; отношение количества всех обнаруженных дефектов к дефектам, найденным с применением заданного подхода и т.п. Только обладая такого рода данными можно говорить о корректности сравнения и оценки эффективности.
2.4.5Процесс тестирования
2.4.5.1Практические соображения
Концепции, стратегии, техники и измерения тестирования должны быть объеденены в единый процесс тестирования как деятельности по обеспечению качества. Процесс тестирования поддерживает работы по тестированию и определяет “правила игры” для членов команды тестирования – от планирования тестов до оценки их результатов. Хотя, в большинстве современных методов разработки, в частности, гибких (agile) подходов, тестирование выходит на передний план и является одной из базовых практик, многостороннее тестирование и, тем более, прогнозирование на основе полученных результатов, часто подменяется отдельными работами в этой области, не позволяющими добиться необходимых параметров качества (что, кстати, ясно показывают уже упоминавшиеся результаты исследований Standish Group [Chaos, 2004]). Только в том случае, если тестирование рассматривать как один из важных процессов всей деятельности по созданию и поддержке программного обеспечения, можно добиться оценки стоимости соответствующих работ и, в конце концов, соблюсти те ограничения, которые определены для проекта.