
- •1 Основы программной инженерии 6
- •2 Процессы жизненного цикла программного средства 33
- •3 Инструменты и методы программной инженерии 184
- •4 Качество и эффективность в программной инженерии 193
- •Введение
- •1Основы программной инженерии
- •1.1Кризисы программирования и возникновение программной инженерии
- •1.2Программная инженерия и сущность инженерного подхода к созданию программного обеспечения
- •1.3Системная инженерия программного обеспечения
- •1.4Управление жизненным циклом программных средств
- •1.4.1Понятие жизненного цикла
- •1.4.2Масштабы программных средств
- •1.4.3Классификация процессов жизненного цикла по исо/мэк 12207
- •1.4.4Стадии разработки программных средств по еспд
- •1.4.5Типичная схема управления процессом создания программного обеспечения
- •1.5Модели жизненного цикла
- •1.5.1Каскадная (водопадная) модель
- •1.5.2Итеративная и инкрементальная модель – эволюционный подход
- •1.5.3Спиральная модель
- •2Процессы жизненного цикла программного средства
- •2.1Управление требованиями к программному обеспечению
- •2.1.1Программные требования
- •2.1.1.1Пирамида требований
- •2.1.1.2Характеристики программных требований
- •2.1.2Процесс управления требованиями
- •2.1.3Извлечение требований
- •2.1.4Анализ программных требований
- •2.1.5Документирование требований
- •2.1.6Проверка требований (верификация и аттестация)
- •2.1.7Измерение программных требований
- •2.2Проектирование программных средств
- •2.2.1Принципы проектирования
- •2.2.2Структура и архитектура программного обеспечения
- •2.2.2.1Архитектурные структуры и точки зрения
- •2.2.2.2Архитектурные стили
- •2.2.2.3Шаблоны проектирования
- •2.2.2.4Семейства программ и фреймворков
- •2.2.3Анализ качества и оценка программного дизайна
- •2.2.3.1Атрибуты качества
- •2.2.3.2Анализ качества и техники оценки
- •2.2.3.3Измерения
- •2.2.4Нотации проектирования
- •2.2.4.1Структурные описания
- •2.2.4.2Поведенческие (динамические) описания
- •2.2.5Подходы и методы проектирования программного обеспечения
- •2.2.5.1Общие подходы
- •2.3Использование uml в программной инженерии
- •2.3.1Основные компоненты uml
- •2.3.2Диаграмма вариантов использования
- •2.3.3Диаграмма классов
- •2.3.4Диаграмма состояний
- •2.3.5Диаграмма деятельности
- •2.3.6Диаграмма последовательности
- •2.3.7Диаграмма кооперации
- •2.3.8Диаграмма компонентов
- •2.3.9Диаграмма развертывания
- •2.4Тестирование программного обеспечения
- •2.4.1Основы тестирования
- •2.4.2Уровни тестирования
- •2.4.2.1Над чем производятся тесты
- •2.4.2.2Цели тестирования
- •2.4.3Техники тестирования
- •3.1 Техники, базирующиеся на интуиции и опыте инженера (Based on the software engineer’s intuition and experience)
- •3.2 Техники, базирующиеся на спецификации (Specification-based techniques)
- •3.3 Техники, ориентированные на код (Code-based techniques)
- •3.4 Тестирование, ориентированное на дефекты (Fault-based techniques)
- •3.5 Техники, базирующиеся на условиях использования (Usage-based techniques)
- •3.6 Техники, базирующиеся на природе приложения (Techniques based on the nature of the application)
- •3.7 Выбор и комбинация различных техник (Selecting and combining techniques)
- •4.1 Оценка программ в процессе тестирования (Evaluation of the program under test, ieee 982.1-98)
- •2.4.4.2Оценка выполненных тестов
- •2.4.5Процесс тестирования
- •2.4.5.1Практические соображения
- •2.4.5.2Тестовые работы
- •2.5Сопровождение программного обеспечения
- •2.5.1Основы сопровождения программного обеспечения
- •2.5.1.1Определения и терминология
- •2.5.1.2Природа сопровождения
- •2.5.1.3Потребность в сопровождении
- •2.5.1.4Приоритет стоимости сопровождения
- •2.5.1.5Эволюция программного обеспечения
- •2.5.1.6Категории сопровождения
- •2.5.2Ключевые вопросы сопровождения программного обеспечения
- •2.5.2.1Технические вопросы
- •2.5.2.2Оценка стоимости сопровождения
- •2.5.2.3Измерения в сопровождении программного обеспечения
- •2.5.3Процесс сопровождения
- •2.5.3.1Процессы сопровождения
- •2.5.3.2Работы по сопровождению
- •2.5.4Техники сопровождения
- •2.5.4.1Понимание программных систем
- •2.5.4.2Реинжиниринг
- •2.5.4.3Обратный инжиниринг
- •2.6Конфигурационное управление
- •2.6.1Управление конфигурационным процессом
- •2.6.1.1Организационный контекст управления конфигурацией по
- •2.6.1.2Ограничения и правила управления конфигурацией по
- •2.6.1.3Планирование при управлении конфигурацией по
- •2.6.1.4План конфигурационного управления
- •2.6.1.5Контроль выполнения процесса управления конфигурацией по
- •2.6.2Идентификация программных конфигураций
- •2.6.2.1Идентификация элементов, требующих контроля
- •2.6.2.2Программная библиотека
- •2.6.3Контроль программных конфигураций
- •2.6.3.1Предложение, оценка и утверждение изменений
- •2.6.3.2Реализация изменений
- •2.6.3.3Отклонения и отказ от изменений
- •2.6.4Учет статусов конфигураций
- •2.6.4.1Информация о статусе конфигураций
- •2.6.4.2Отчетность по статусу конфигураций
- •2.6.5Аудит конфигураций
- •2.6.5.1Функциональный аудит программных конфигураций
- •2.6.5.2Физический аудит программных конфигураций
- •2.6.5.3Внутренние аудиты базовых линий
- •2.6.6Управление выпуском и поставкой
- •2.6.6.1Сборка программного обеспечения
- •2.6.6.2Управление выпуском программного обеспечения
- •3Инструменты и методы программной инженерии
- •3.1Инструменты
- •3.1.1Инструменты работы с требованиями
- •3.1.2Инструменты проектирования и конструирования
- •3.1.3Инструменты тестирования
- •3.1.4Инструменты сопровождения
- •3.1.5Инструменты конфигурационного управления
- •3.1.6Инструменты управления инженерной деятельностью
- •3.1.7Инструменты поддержки процессов
- •3.1.8Инструменты обеспечения качества
- •3.2Методы
- •3.2.1Эвристические методы
- •3.2.2Формальные методы
- •3.2.3Методы прототипирования
- •4Качество и эффективность в программной инженерии
- •4.1Обеспечение качества программного обеспечения
- •4.1.1Качество программного продукта
- •4.1.2Культура и этика программной инженерии
- •4.1.3Значение и стоимость качества
- •4.1.4Повышение качества пс с использованием процессного подхода
- •4.1.5Показатели качества программных средств
- •4.1.6Количественная оценка качества программного обеспечения
- •4.2Модели качества процессов конструирования
- •4.2.1Качество процессов
- •4.2.4Прочие подходы
- •4.3Процессы управления качеством программного обеспечения
- •4.3.1Подтверждение качества программного обеспечения
- •4.3.2Проверка (верификация) и аттестация
- •4.3.3Оценка и аудит
- •4.3.4Характеристика дефектов
- •4.3.5Методы управления качеством программного обеспечения
- •4.4Стандартизация качества программного обеспечения
- •4.4.1Стандарты в сфере программной инженерии
- •4.4.2Стандартизация программных продуктов в еспд
- •4.4.3Виды стандартных программных документов
- •4.4.4Действующие международные стандарты в сфере разработки программных средств и информационных технологий
- •4.5Документирование программных средств
- •4.6Сертификация программных средств
- •4.6.1Правовые акты по сертификации программных продуктов
- •4.6.2Сертификация пс
- •4.6.3Перечень объектов, подлежащих сертификации и их характеристики
- •Заключение Библиография
2.4Тестирование программного обеспечения
2.4.1Основы тестирования
Тестирование (software testing) – деятельность, выполняемая для оценки и улучшения качества программного обеспечения. Эта деятельность, в общем случае, базируется на обнаружении дефектов и проблем в программных системах.
Тестирование программных систем состоит из динамической верификации поведения программ на конечном (ограниченном) наборе тестов (set of test cases), выбранных соответствующим образом из обычно выполняемых действий прикладной области и обеспечивающих проверку соответствия ожидаемому поведению системы.
В данном определении тестирования выделены слова, определяющие основные вопросы, которым адресуется данная область знаний:
Динамичность (dynamic): этот термин подразумевает тестирование всегда предполагает выполнение тестируемой программы с заданными входными данными. При этом, величины, задаваемые на вход тестируемому программному обеспечению, не всегда достаточны для определения теста. Сложность и недетерминированность систем приводит к тому, что система может по разному реагировать на одни и те же входные параметры, в зависимости от состояния системы. В данной области знаний термин “вход” (input) будет использоваться в рамках соглашения о том, что вход может также специфицировать состояние системы, в тех случаях, когда это необходимо. Кроме динамических техник проверки качества, то есть тестирования, существуют также и статические техники, рассматриваемые в области знаний “Software Quality”.
Конечность (ограниченность, finite): даже для простых программ теоретически возможно столь большое количество тестовых сценариев, что исчерпывающее тестирование может занять многие месяцы и даже годы. Именно поэтому, с практической точки зрения, всестороннее тестирование считается бесконечным. Тестирование всегда предполагает компромисс между ограниченными ресурсами и заданными сроками, с одной стороны, и практически неограниченными требованиями по тестированию, с другой. То есть мы снова говорим об определении характеристик “приемлемого” качества, на основе которых планируем необходимы объем тестирования.
Выбор (selection): многие предлагаемые техники тестирования отличаются друг от друга в том, как выбираются сценарии тестирования. Инженеры по программному обеспечению должны обладать представлением о том, что различные критерии выбора тестов могут давать разные результаты, с точки зрения эффективности тестирования. Определение подходящего набора тестов для заданных условий является очень сложной проблемой. Обычно, для выбора соответствующих тестов совместно применяют техники анализа рисков, анализ требований и соответствующую экспертизу в области тестирования и заданной прикладной области.
Ожидаемое поведение (expected behaviour): Хотя это не всегда легко, все же необходимо решить, какое наблюдаемое поведение программы будет приемлемо, а какое – нет. В противном случае, усилия по тестированию – бесполезны. Наблюдаемое поведение может рассматриваться в контексте пользовательских ожиданий (подразумевая “тестирования для проверки” - testing for validation), спецификации (“тестирование для аттестации” - testing for verification) или, наконец, в контексте предсказанного поведения на основе неявных требований или обоснованных ожиданий. См. тему SWEBOK 6.4 “Приемочные тесты” области знаний “Software Requirements”.
Общий взгляд на тестирование программного обеспечения последние годы активно эволюционировал, становясь все более конструктивным, прагматичным и приближенным к реалиям современных проектов разработки программных систем. Тестирование более не рассматривается как деятельность, начинающаяся только после завершения фазы конструирования. Сегодня тестирование рассматривается как деятельность, которую необходимо проводить на протяжении всего процесса разработки и сопровождения и является важной частью конструирования программных продуктов. Действительно, планирование тестирования должно начинаться на ранних стадиях работы с требованиями, необходимо систематически и постоянно развивать и уточнять планы тестов и соответствующие процедуры тестирования. Даже сами по себе сценарии тестирования оказываются очень полезными для тех, кто занимается проектированием, позволяя выделять те аспекты требований, которые могут неоднозначно интерпретироваться или даже быть противоречивыми.
Не секрет, что легче предотвратить проблему, чем бороться с ее последствиями. Тестирование, наравне с управлением рисками, является тем инструментом, который позволяет действовать именно в таком ключе. Причем действовать достаточно эффективно. С другой стороны, необходимо осознавать, что даже если приемочные тесты показали положительные результаты, это совсем не означает, что полученный продукт не содержит ошибок. Этим вопросам, в частности, адресована область знаний “Сопровождение программного обеспечения” (Software Maintenance). Однако, адекватное внимание вопросам тестирования качественно снижает риск возникновения ошибок на этапе эксплуатации, обеспечивая более высокую удовлетворенность пользователей, что и является, по существу, целью любого проекта.
В области знаний “Качество программного обеспечения” (Software Quality) техники управления качеством четко разделены на статические (без выполнения кода) и динамические (с выполнением кода). Обе эти категории важны. Данная область знаний - “Тестирование” – касается динамических техник.
Как уже отмечалось ранее, тестирование тесно связано с областью знаний “Конструирование” (Software Construction). Более того, модульное (unit-) и интеграционное тестирование все чаще рассматривают как неотъемлемый элемент деятельности по конструированию.
Рисунок 5. Область знаний “Тестирование программного обеспечения” [SWEBOK, 2004, с.5-2, рис. 1]
Критерии отбора тестов могут использоваться как для создания набора тестов, так и для проверки, насколько выбранные тесты адекватны решаемым задачам (тестирования). При этом, обсуждаемые критерии помогают определить, когда можно или необходимо прекратить тестирование.
Эффективность тестирования/Цели тестирования (Test effectiveness/Objectives for testing)
Тестирование – это наблюдение за выполнением программы, запущенной в целях тестирования с заданными параметрами, по заданному сценарию или с другими заданными начальными условиями или целями тестирования. Эффективность теста может быть определена только в контексте заданных условий.
Тестирование для идентификации дефектов (Testing for defect identification)
Данный случай тестирования подразумевает успешность процедуры тестирования, если дефект найден. Это отличается от подхода в тестировании, когда тесты запускаются для демонстрации того, что программное обеспечение удовлетворяет предъявляемым требованиями и, соответственно, тест считается успешным, если не найдено дефектов.
Проблема оракула (The oracle problem)
“Оракул”, в данном контексте, любой агент (человек или программа), оценивающий поведение программы, формулируя вердикт - тест пройден (“pass”) или нет (“fail”).
Теоретические и практические ограничения тестирования (Theoretical and practical limitation of testing)
Теория тестирования выступает против необоснованного уровня доверия к серии успешно пройденных тестов. К сожалению, большинство установленных результатов теории тестирования – негативны, означая, по словам Дейкстры (Dijkstra), то, что “тестирование программы может использоваться для демонстрации наличия дефектов, но никогда не покажет их отсутствие”. Основная причина этого в том, что полное (всеобъемлющее) тестирование недостижимо для реального программного обеспечения. Проблема неосуществимых путей (The problem of infeasible paths)
Эта сложнейшая проблема автоматизированного тестирования связана с тем, что путь, по которому выполняются потоки работ тестируемой программной системы, не могут быть заданы входными параметрами.
Тестируемость (Testability)
Это понятие может подразумевать две различных идеи. Первая описывает степень легкости описания критериев покрытия тестами для заданной программной системы. Вторая определяет возможность вероятность, возможность статистического измерения того, что при тестировании проявится сбой программной системы. Обе интерпретации этого понятия одинаково важны для тестирования.
Тестирование программного обеспечения отличается от статических техник управления качеством, проверки корректности, отладки и программирования, но связано со всеми этими работами. Полезно рассматривать тестирование с точки зрения аналитиков и специалистов по сертификации качества.