
- •Общее описание методики пульсовой оксиметрии
- •Фотометрическая оксиметрия (подробно)
- •Неинвазивное измерение насыщения крови кислородом
- •Принцип работы пульсоксиметра
- •Фильтры
- •Моделирование в мс-9
- •Блок-схема всего пульсоксиметра
- •Пульсоксиметр oxycount mini
- •Датчики и аксессуары для пульсоксиметров nonin
Неинвазивное измерение насыщения крови кислородом
(технические средства)
Принцип работы пульсоксиметра
For an idealized light absorbing model as shown in Fig.6 The Lambert-Beer law applies. The intensity I of Ihe light transmitted is related to the incident light I0. by:
,
(1)
= [c]=
Assume that there are N layers of absorbers and that the ith absorber layer has concentration ci, thickness di. and extinction coefficient Ext(i,). From equation (1) it follows, at diastole, when there is a maximum of light intensity:
(2)
Al systole, ihe maximum of the heartbeat, and under the assumption that only hemoglobin and oxyhemoglobin are active absorbers in the arterial blood, two additional absorbing parts are added in the exponent of equation 2, which yields the minimum of light intensity:
Полагая:
,
подставляя I0
из (2), получим:
(3)
wltere [Hb] is the concentration of hemoglobin and [HbO2] is the concentration of oxyhemoglobin. Dividing equation 2 by equation 3 and taking the logarithm yields the absorption of the arterial blood:
(4)
where d is the change in the arterial radius (?) (see Fig.7). The definition for the oxygen saturation in pulse oximetry is:
(5)
With two light sources (LEDs) of different wavelengths 1 and 2 the arterial expansion d can be eliminated by the following relation, which is called the ratio R:
(6)
Thus, the oxygen saturation SpO2 is:
Пример типичной фотоплезмограммы на входе АЦП (инфракрасный канал)
IR
R
Фильтры
ФВЧ 0.5 Hz:
ФНЧ 5 Hz:
Полосой фильтр 0,5-5 Hz:
ЛАЧХ
h(t) & k(t)
Моделирование в мс-9
Замечание 2.
Существует отражательная пдетизмография:
Блок-схема всего пульсоксиметра
APPLICATION NOTE 3428 |
Transimpedance Amplifier Buffers Current Transformer |
Abstract: A general-purpose current-measurement system employs a current transformer, ac-coupled to a transimpedance amplifier. About transimpedance and transconductance: The words "transconductance" and "transimpedance" are often used interchangeably. Technically, the terms differ: a transimpedance amp delivers an output voltage that is a function of the input current; conversely, a transconductance amp converts a voltage to a current. Current
transformers are not only a convenient means for current
measurement in many applications, but also provide isolation while
absorbing very little power from the source. The output current
from a current transformer can be converted to voltage with a
suitably valued resistor, but that approach can dramatically
reduce the transformer's high-frequency response.
Transimpedance
amplifiers are a good method for converting current to voltage in
most current-measurement applications. The current source feeds
into the virtual ground of an op amp, and the transimpedance can
be adjusted by changing the value of a single resistor (Figure
1). As
another benefit of this arrangement, the circuit gain for input
offset voltage is no greater than unity.
|