Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Стационарная тепл-ть.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.23 Mб
Скачать

1. Передача теплоты через цилиндрическую стенку

и граничных условиях I рода

Подвод теплоносителя к потребителю обычно осуществляется по трубам, а сами потребители часто имеют цилиндрический корпус. В связи с этим возникает необходимость расчета тепловых потоков через цилиндрическую оболочку.

Рассмотрим стационарный процесс теплопроводности в цилиндрической стенке (трубе) с внутренним диаметром d1 = 2r1 и наружным диаметром d2 = 2r2. На поверхности стенки заданы

постоянные температуры tc1 и tc2. В заданном интервале температур =const. Необходимо найти распределение температур в цилиндрической стенке и тепловой поток через нее.

В рассматриваемом случае дифференциальное уравнение теплопроводности удобно записать в цилиндрической системе координат:

.

При этом ось Oz совмещена с осью трубы.

При заданных условиях температура изменяется только в радиальном направлении и температурное поле будет одномерным, поэтому:

и .

Кроме того, так как температуры на наружной и внутренней поверхностях трубы неизменны, изотермические поверхности являются цилиндрическими. Тогда температура не должна изменяться вдоль , то есть:

и .

Следовательно, дифференциальное уравнение теплопроводности примет вид:

.

Граничные условия задаются следующим образом:

t = tc1 при r = r1;

t = tc2 при r = r2.

Для решения дифференциального уравнения введем новую переменную:

.

Тогда дифференциальное уравнение примет вид:

.

Интегрируя, получаем:

.

Потенцируя и переходя к первоначальным переменным, получаем:

.

После интегрирования находим:

.

Подставим в полученное выражение граничные условия:

,

; .

Тогда температурное поле будет равно:

,

или .

Полученное выражение представляет собой уравнение логарифмической кривой. Криволинейное распределение температуры в цилиндрической стенке объясняется следующим. Для плоской стенки плотность теплового потока q остается одинаковой для всех изотермических поверхностей. Для цилиндрической стенки q через любую изотермическую поверхность зависит от радиуса.

Для нахождения количества теплоты, проходящего через цилиндрическую поверхность площадью F в единицу времени, воспользуемся законом Фурье:

.

Очевидно, ; .

Тогда Q равно:

.

Из полученного выражения видно, что так же, как и для плоской стенки, тепловой поток через цилиндрическую оболочку прямо пропорционален разности температур поверхностей стенки.

Тепловой поток может быть отнесен либо к единице длины трубы, либо к единице внутренней или внешней поверхности. При этом расчетные формулы для плотности теплового потока, принимают вид:

- тепловой поток через единицу внутренней поверхности;

- тепловой поток через единицу наружной поверхности;

- поток теплоты, проходящий через единицу длины трубы.

ql также называется линейной плотностью теплового потока (Вт/м).

Как видно из первых двух уравнений плотности теплового потока q1 и q2 (отнесенные к внутренней и внешней поверхности) при передаче теплоты через трубы неодинаковы, причем всегда q1 > q2.

Связь между величинами q1, q2 и ql следующая:

.