- •Виды энергии
- •Кинетическая
- •Потенциальная
- •Гравитационная
- •Ядерная
- •Внутренняя
- •5. Электромагнитные взаимодействия как определяющие химический и биологический уровень организации материи
- •6. Теории Великого Объединения
- •1. Пространство и время
- •2. Ньютоновская концепция абсолютного пространства и времени.
- •7. Соотношение динамических и статистических законов
2. Ньютоновская концепция абсолютного пространства и времени.
Вопросы пространства и времени всегда интересовали человеческое общество. Одна из концепций этих понятий идет от древних атомистов – Демокрита, Эпикура и др. Они ввели в научный оборот понятие пустого пространства и рассматривали его как однородное и бесконечное.
В процессе создания общей картины мироздания Исаак Ньютон (1642–1726), конечно, также не мог обойти вопрос понятия пространства и времени.
В 1687 г. он опубликовал труд «Математические начала натуральной философии», который стал вершиной достижений естествознания XVII в.
По Ньютону, мир состоит из материи, пространства и времени. Эти три категории независимы друг от друга. Материя размещается в бесконечном пространстве. Движение материи происходит в пространстве и времени. Ньютон разделял пространство на абсолютное и относительное. Абсолютное пространство неподвижно, бесконечно. Относительное – это часть абсолютного. Так же он классифицировал и время. Подабсолютным, истинным (математическим) временем он понимал время, которое течет всегда и везде равномерно, а относительное время, по Ньютону, есть мера продолжительности, которая существует в реальной жизни: секунда, минута, час, сутки, месяц, год. У Ньютона абсолютное время существует и длится равномерно само по себе, безотносительно к каким-либо событиям. Абсолютное пространство и абсолютное время представляют собой вместилище всех материальных тел и пространств и не зависят ни от этих тел, ни от этих процессов, ни друг от друга.
Массу Ньютон определяет как количество материи и вводит понятие «пассивной силы» (силы инерции) и «активной силы», создающей движение тел.
3. Изучив и выявив закономерности движения, Ньютон таким образом сформулировал его законы:
1– й закон. Всякому телу продолжать свое состояние покоя или равномерного прямолинейного движения, поскольку оно не принуждается приложенными силами изменять это состояние.
2– й закон. Изменению движения быть пропорциональным приложенной движущей силе и происходить по направлению той прямой, по которой эта сила действует.
3– й закон. Действию всегда встречать равное противодействие, или воздействию двух тел друг на друга быть между собой равными и направленными в противоположные стороны.
В наше время знаменитые законы формулируются в более удобной форме:
> 1. Всякое материальное тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние. Стремление тела сохранить состояние покоя или равномерного прямолинейного движения называетсяинертностью. Поэтому первый закон называют также законом инерции.
> 2. Ускорение, приобретаемое телом, прямо пропорционально силе, действующей натело, и обратно пропорционально массе тела.
> 3. Силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению.
Второй закон Ньютона нам известен в виде
F = m × a, или a = F/m,
где ускорение а, получаемое телом поддействием силы F, обратно пропорционально массе тела m. Величина m называется инертной массой тела, она характеризует способность тела оказывать сопротивление действующей («активной») силе, то есть сохранять состояние покоя. Второй закон Ньютона справедлив только в инерциальных системах отсчета.
Первый закон можно получить из второго, так как в случае отсутствия воздействия на тело со стороны других сил ускорение также равно нулю. Однако первый закон рассматривается как самостоятельный закон, поскольку он утверждает существование инерциальных систем отсчета.
И так, движение материального тела можно мерить двояким образом:
количеством движения mv и кинетической энергией mv2/2. Первая мера движения векторная (произведение скалярной величины на векторную дает векторнуювеличину),вторая мера движения - скалярная (квадрат вектора скорости, т.е. произведение вектора скорости на самого себя есть скалярная величина).
Количественной мерой взаимодействия в механике является сила. Аналогично двум мерам движения существует две меры действия сил.
Действие силы на тело можно измерить импульсом силы или работой. Импульс силы - векторная мера действия силы, работа - скалярная.
Важным экспериментальным результатом явилось то, что переход механического движения в другие формы движения материи при одних и тех же условияхосуществляется в однозначных количественных отношениях. Это при вело к установлению универсальной меры любых видов движения материи - энергии. Глядя насхему можно сказать, что работа является мерой передачи энергии, переданной от одного тела к другому.
Таким образом, энергия-это мера движения любых видов движения материи, а работа - это мера передачи энергии при взаимодействии, "изменение формы движения,рассматриваемое с его количественной стороны" (Ф.Энгельс).
Если отсутствует превращение механической энергии в другие формы движения материи, то закон сохранения энергии в механике выражает не уничтожимостьмеханического движения материи.
Приведенная схема хорошо иллюстрирует замечание Энгельса о том, что сила не является причиной движения. Движение есть форма существования материи, форма бытия.И в самом общем виде говорить о причине движения не имеет смысла. Но движение может быть передано от одного тела к другому. И вот величиной, характеризующейколичественно эту передачу движения и является сила.
4. В классической физике система понимается как совокупность каких-то частей, связанных между собой определенным образом. Эти части (элементы) системы могут воздействовать друг на друга, и предполагается, что их взаимовоздействие всегда может оцениваться с позиций причинно-следственных отношений между взаимодействующими элементами системы.
Философское учение об объективности закономерной взаимосвязи и взаимообусловленности явлений материального и духовного мира называют детерминизмом. Центральным понятием детерминизма является положение о существовании причинности; причинность имеет место, когда одно явление порождает другое явление (следствие).
Классическая физика стоит на позициях жесткого детерминизма, который называют лапласовским, – именно Пьер Симон Лаплас провозгласил принцип причинности как фундаментальный закон природы. Лаплас считал, что если известно расположение элементов (каких-то тел) системы и действующие в ней силы, то можно с полной достоверностью предсказать, как будет двигаться каждое тело этой системы сейчас и в будущем. Он писал: «Мы должны рассматривать существующее состояние Вселенной как следствие предыдущего состояния и как причину последующего. Ум, который в данный момент знал бы все силы, действующие в природе, и относительное положение всех составляющих ее сущностей, если бы он еще был столь обширен, чтобы ввести в расчет все эти данные, охватил бы одной и той же формулой движения крупнейших тел Вселенной и легчайших атомов. Ничто не было бы для него недостоверным, и будущее, как и прошедшее, стояло бы перед его глазами». Традиционно это гипотетическое существо, которое могло бы (по Лапласу) предсказать развитие Вселенной, в науке называют «демоном Лапласа».
В классический период развития естествознания утверждается представление о том, что только динамические законы полностью характеризуют причинность в природе.
Лаплас пытался объяснить весь мир, в том числе физиологические, психологические, социальные явления с точки зрения механистического детерминизма, который он рассматривал как методологический принцип построения всякой науки. Образец формы научного познания Лаплас видел в небесной механике. Таким образом, лапласовский детерминизм отрицает объективную природу случайности, понятие вероятности события.
Дальнейшее развитие естествознания привело к новым представлениям причинности и следствия. Для некоторых природных процессов трудно определить причину – например, радиоактивный распад происходит случайно. Нельзя однозначно связать время «вылета» α– или β-частицы из ядра и значение ее энергии. Подобные процессы объективно случайны. Особенно много таких примеров в биологии. В нынешнем естествознании современный детерминизм предлагает разнообразные, объективно существующие формы взаимосвязи процессов и явлений, многие из которых выражаются в виде соотношений, не имеющих выраженных причинных связей, то есть не содержащих в себе моментов порождения одного другим. Это и пространственно-временные связи, отношения симметрии и определенных функциональных зависимостей, вероятностные соотношения и т. д. Однако все формы реальных взаимодействий явлений образуются на основе всеобщей действующей причинности, вне которой не существует ни одного явления действительности, в том числе и так называемых случайных явлений, в совокупности которых проявляются статические законы.
Наука продолжает развиваться, обогащается новыми концепциями, законами, принципами, что свидетельствует об ограниченности лапласовского детерминизма. Однако классическая физика, в частности классическая механика, имеет и сегодня свою нишу применения. Ее законы вполне применимы для относительно медленных движений, скорость которых значительно меньше скорости света. Значение классической физики в современный период хорошо определил один из создателей квантовой механики Нильс Бор: «Как бы далеко ни выходили явления за рамки классического физического объяснения, все опытные данные должны описываться при помощи классических понятий. Обоснование этого состоит просто в констатации точного значения слова «эксперимент». Словом «эксперимент» мы указываем на такую ситуацию, когда мы можем сообщать другим, что именно мы сделали и что именно мы узнали. Поэтому экспериментальная установка и результаты наблюдений должны описываться однозначным образом на языке классической физики».
5. П. п., с которым имеет дело современная физика, является конкретно-физическим утверждением, существенно более узким по своему содержанию, чем общее философское понятие причинности — взаимной обусловленности, детерминированности последовательности событий. Проблема причинности приобрела большую остроту в период становления квантовой механики, когда широко обсуждался вопрос, противоречит ли детерминизму вероятностное описание микроявлений. К отрицательному ответу на этот вопрос привело понимание необходимости отказаться от прямолинейного детерминизма классической механики при рассмотрении статистических закономерностей микромира. Кажущееся противоречие с общим П. п. объясняется непригодностью классической физики для описания микрообъектов. Переход к адекватному описанию на языке волновых функций приводит к тому, что и в квантовой механике начальное состояние системы полностью определяет всю последующую её эволюцию (при известных взаимодействиях системы).
6. Вероятностный детерминизм
До развития квантовой физики в первой половине XX века идеи жесткой детерминации и случайности вполне мирно уживались друг с другом, поскольку считалось, что случайность - это лишь результат незнания человеком всех причинных факторов. На самом деле ничего случайного нет, но человеческий разум весьма ограничен и не в состоянии постичь бесконечность мира, чтобы удостовериться в отсутствии всякой случайности. Здесь нужно отметить, что случайным называют такое событие, которое не имеет причины, поэтому понятие случайности формально противоречит идеи детерминации.
Развитие квантовой механики привело большинство ученых к необходимости принятия такой интерпретации физической теории, которая предполагает наличие случайности в самой реальности, а не только в нашем сознании. Такое изменение взглядов на природу случайности можно называть онтологизацией случайности. Но и в этом случае детерминизм не совсем отвергается, он скорее лишь ослабляется, принимая форму вероятностного детерминизма. В этом виде детерминизма любое событие имеет множество причин и множество следствий, оказываясь включенным в сеть причинно-следственных отношений. Следствие вытекает из причины уже только с некоторой вероятностью, а не с необходимостью. Вероятность - это степень необходимости, способная принимать непрерывный спектр значений от нуля (невозможность) до единицы (необходимость).
Общая схема вероятностного детерминизма может быть изображена примерно так. Если u(ti) - какое-то событие в момент времени ti, то оно может с некоторыми вероятностями следовать из нескольких предшествующих событий, например, из u1(ti-1) и u2(ti-1) с вероятностями P-1 и P-2 соответственно, и вызывать несколько последующих событий, например, u1(ti+1) и u2(ti+1) с вероятностями P+1 и P+2соответственно. В этом случае, даже зная, что существует событие u(ti), мы не в состоянии точно определить, ни из какого предшествующего события произошло данное событие, ни к какому будущему событию оно приведет. Правда, это не значит, что мы совсем ничего не знаем. Мы можем, например, утверждать, что событие u(ti) с вероятностью P-1 следует из события u1(ti-1) и с вероятностью P+2 приведет к событию u2(ti+1). Вот такого рода вероятностное знание причинно-следственных отношений и лежит в основании вероятностного детерминизма. Этот вид детерминизма человеку более знаком, нежели жесткий детерминизм, поскольку в обычной жизни мы все время лишь с какой-то вероятностью можем связывать события между собою причинно-следственными отношениями. Будет завтра солнечно или пасмурно? Удастся ли мне сдать экзамен? Верно ли, что беды в нашей стране вызваны развитием «дикого капитализма»? Было ли причиной гриппа охлаждение или сниженный иммунитет? Все эти и им подобные вопросы обычны для человека. Мы можем отвечать на них лишь с некоторой вероятностью. Следовательно, человеческая жизнь всегда была погружена в сферу вероятностных отношений.
Каждое событие в модели вероятностного детерминизма оказывается узлом бесконечной сети отношений частичных причин и следствий. Исчезает абсолютное различие между ними. То, что в данный момент является причиной, в следующий момент может стать следствием. Начинают происходить взаимообмены причин и следствий. Если возможны случайные события, то есть события без предшествующей им причины, то, следовательно, возможно возникновение нового узла каузальной сети. Но там, где есть возникновение, есть и уничтожение: становится возможным событие без последствий, проявления которого исчезают в будущем. Узлы каузальной сети, следовательно, могут и исчезать. Возникновение и уничтожение также приобретают онтологический характер: последовательно и до конца проведенный вероятностный детерминизм должен повести к ограничению закона сохранения энергии, что как раз наблюдается в квантовой физике.
