
- •Виды энергии
- •Кинетическая
- •Потенциальная
- •Гравитационная
- •Ядерная
- •Внутренняя
- •5. Электромагнитные взаимодействия как определяющие химический и биологический уровень организации материи
- •6. Теории Великого Объединения
- •1. Пространство и время
- •2. Ньютоновская концепция абсолютного пространства и времени.
- •7. Соотношение динамических и статистических законов
1. Понятие «материи» на протяжении истории человеческого мышления неоднократно претерпевало изменения.
Современное естествознание принимает материю как основу всего существующего. Мир, в котором мы живем и частью которого являемся – это материальный мир. Он состоит их отдельных предметов и процессов, которые превращаются друг в друга, возникают и исчезают, отражаются в нашем сознании, существуя независимо от него. Для материи предполагается бесконечное развитие и неисчерпаемость, а также определенная очень сложная структура.
Материя обладает множеством свойств, среди которых выделяют три главные: масса, энергия и информация. Они позволяют количественно представить различные объекты.
Масса |
1) одна из основных физических характеристик материи; 2) положительная скалярная величина, являющаяся количественной мерой инертных и гравитационных свойств материи. 3) согласно выводам специальной теории относительности, масса является также мерой энергии тел. |
Энергия |
1) скалярная физическая величина; 2) общая количественная мера движения и взаимодействия всех видов материи; 3) является однозначной функцией состояния объекта. 4) согласно закону сохранения энергии энергия в природе не возникает из ничего и не исчезает, она только переходит из одной формы в другую; 5) понятие энергии связывает воедино все явления природы; 6) в рамках СТО законы сохранения массы и материи слиты воедино |
Информация |
1) мера порядка, который противостоит хаосу: 2) мера сложности системы; 3) характеристика внутреннего разнообразия системы; 4) мера вероятностного выбора одной из возможных траекторий того или иного процесса; 5) представляет меру неоднородности распределения энергии и вещества в пространстве и во времени; 6) выражает свойство материи, которое является всеобщим и связано с наиболее общими представлениями о движении как изменении; 7) существует множество видов специфического проявления информации; 8) наиболее существенным признаком информации является отражение и разнообразие,то информация является свойством материи. 9) отраженная в сознании человека может быть субъективной, выражаться в чувственных образах и в формах научного познания; 10) может быть объективной и субъективной; 11) не является лишь сведениями, сообщениями, продуктом и формой духовной действительности; 12) выходит за границы результатов деятельности человека, это такое же свойство материи как движение и отражение; 13) существует постольку, поскольку существуют материальные тела, и, следовательно, созданные ими неоднородности.
|
2. С древнейших времен существовали два противоположных представления о структуре материального мира. Одно из них - континуальная концепция Анаксагора - Аристотеля - базировалось на идее непрерывности, внутренней однородности, «сплошности» и, по-видимому, было связано с непосредственными чувственными впечатлениями, которые производят вода, воздух, свет и т.п. Материю, согласно этой концепции, можно делить до бесконечности, и это является критерием ее непрерывности. Заполняя все пространство целиком, материя не оставляет пустоты внутри себя.
Другое представление - атомистическая (корпускулярная) концепция Левкиппа - Демокрита - было основано на дискретности пространственно-временного строения материи, «зернистости» реальных объектов и отражало уверенность человека в возможность деления материальных объектов на части лишь до определенного предела - до атомов, которые в своем бесконечном разнообразии (по величине, форме, порядку) сочетаются различными способами и порождают все многообразие объектов и явлений реального мира. При таком подходе необходимым условием движения и сочетания реальных атомов является существование пустого пространства. Таким образом, корпускулярный мир Левкиппа-Демокрита образован двумя фундаментальными началами - атомами и пустотой, а материя при этом обладает атомистической структурой. Атомы по представлению древних греков не возникают и не уничтожаются, их вечность проистекает из бесконечности времени.
Эти представления о структуре материи просуществовали фактически без существенных изменений до начала XX века, оставаясь двумя антиномиями, определяющими «поле битвы» крупнейших мыслителей. Триумф ньютоновской механики значительно укрепил позиции сторонников корпускулярной структуры материи. И хотя эмпирических доказательств «зернистости» газов, жидкостей, твердых тел, световых пучков в то время не существовало, сама идея считать эти объекты состоящими из взаимодействующих материальных точек была слишком привлекательной, чтобы ею не воспользоваться. Ведь тогда достаточно задать начальное состояние всех этих материальных точек и решить соответствующие уравнения движения, чтобы объяснить наблюдаемые в природе явления и предсказать их эволюцию (детерминизм Лапласа).
Надо признать, что корпускулярный подход оказался чрезвычайно плодотворным в различных областях естествознания. Прежде всего, это, конечно, относится к ньютоновской механике материальных точек. Очень эффективной оказалась и основанная на корпускулярных представлениях молекулярно-кинетическая теория вещества, в рамках которой были интерпретированы законы термодинамики. Правда, механистический подход в чистом виде оказался здесь неприменимым, так как проследить за движением 1023 материальных точек, находящихся в одном моле вещества, не под силу даже современному компьютеру. Однако если интересоваться только усредненным вкладом хаотически движущихся материальных точек в непосредственно измеряемые макроскопические величины (например, давление газа на стенку сосуда), то получалось прекрасное согласие теоретических и экспериментальных результатов.
3. вещество - это производная материи, его основной признак - дискретность. Вещество существует в виде различной сложности объектов, которые занимают соответствующие уровни в иерархической системе мира.
Для вещества можно указать следующие типы систем и соответствующие им структурные уровни: электрон и позитрон, позитроний, элементарные частицы, атомы, молекулы, макроскопические тела различных размеров, геологические системы, Земля и другие планеты, звезды, внутригалактические системы (туманности, звездные скопления и др.), Галактика, система Галактик, Метагалактика.
Существует предел делимости вещества. Этот предел представлен электроном и позитроном. Электрон и позитрон, находятся на нижней границе вещественного мира. Часто электрон и позитрон считают объективно существующими частицами и рассматривают их как данность Природы, считая их "не возникающими и не исчезающими". Мы считаем, что настало время решать новую задачу – задачу происхождения электрона и позитрона. Они и возникают и исчезают. Возникают из физического вакуума и аннигилируют, порождая кванты энергии в непрерывной материи. Граница между материей и веществом условна, так как предельное состояние первой является началом второго уровня организации - вещества.
Вещество в современной системе знаний определено как вид материи, который в отличии от поля физического, обладает массой покоя.
Дискретное вещество не может быть разновидностью непрерывной материи. Проблема происхождения вещества - генезис вещества, является одной из сложнейших нерешенных задач физики. Физика много внимания уделила синтезу вещества, но генезис остался вне поля зрения физики.
Вещество - это дискретное информационно-энергетическое воплощение материи. Вещество представлено различными формами проявления материи в виде дискретных частиц, обладающих массой покоя. Вещество имеет дискретную структуру, но своим происхождением оно обязано непрерывной материи. Дискретность является главным признаком вещества. Вещество можно представить следующей обобщенной формулой:
Вещество = Материя(М)+Энергия(E)+ Информация(I)
Информационная составляющая наделяет вещество важнейшим признаком - дискретностью. Энергия проявляется как масса покоя.
Вещество может находиться в четырех состояниях: газ, жидкость, твердые тела, плазма. Первыми представителями вещества в иерархической системе мира являются две элементарные частицы - электрон и позитрон.
Поле.
Поле в современной системе знаний определено как особая форма материи, как физическая система, обладающая бесконечно большим числом степеней свободы .
Известно, что вблизи заряженных тел существует электромагнитное поле. По мере удаления от них оно ослабевает и потом исчезает совсем.
Поля физические - это энергонасыщенное состояние материи. Примерами полей физических могут служить электромагнитное поле, гравитационное поле, поле ядерных сил. Существуют поля, порождаемые частицами и свободные поля (например, электромагнитные волны). Поле можно представить следующей обобщенной формулой:
Поле = Материя(М)+Энергия(Е)
Таким образом, поле представляет собой составную сущность, в которой материя является лишь одной из составляющих. Другой составляющей является энергия.
По генетической взаимосвязи вещество, материю и поле можно расположить в такой последовательности:
МАТЕРИЯ
ПОЛЕ
ВЕЩЕСТВО.
Таким образом, поле - вторично, вещество - третично, а фундаментальной, онтологической основой мира является не некий дискретный "первокирпичик", или частичка "эфира", а непрерывная субстанция - материя, которая вследствие своей непрерывности непосредственно не наблюдаема и непосредственно никак себя не проявляет. Таким образом, мир материален, поскольку материя является его основой, но наблюдаемый мир - это не материя, а ее вторичное и третичное проявление.
Физический вакуум
Вакуум (по-латински vacuum) – пустота, т.е. пространство без материи и энергии. Физический вакуум – пространство, не содержащее реальных частиц и энергии, поддающейся непосредственному измерению. Согласно современным физическим представлениям, это наиболее низкое энергетическое состояние любых квантованных полей, характеризующееся отсутствием реальных частиц. Возможность виртуальных процессов в физическом вакууме приводит к ряду эффектов взаимодействия реальных частиц с вакуумом, регистрируемых экспериментально. Физический вакуум представляет собой множество всевозможных виртуальных частиц и античастиц, которые в отсутствии внешних полей не могут превратиться в реальные. По современным представлениям в вакууме непрерывно образуются и исчезают пары частиц–античастиц: электрон–позитрон, нуклон–антинуклон... Вакуум наполнен такими «не вполне родившимися», появляющимися и исчезающими частицами. Они не поддаются регистрации и называются виртуальными. Однако при определенных обстоятельствах виртуальные частицы становятся реальными. Так, например, столкновения частиц высоких энергий или сильные поля рождают из вакуума снопы различных частиц и античастиц. Т.е. вакуум может быть представлен, как особый, виртуальный тип среды. Виртуальность среды проявляется, в частности, в невозможности выявить факт движения относительно неё никакими экспериментальными методами, что равносильно проявлению принципа относительности. Концепция равноправия инерциальных систем, называемая принципом относительности, является фундаментом теорий породивших понятие о физическом вакууме. Т.е. представления о физическом вакууме были логически получены из принципа относительности. Согласно с данными представлениями, свет не нуждается в материальной среде-носителе, а совокупность фотонов образует свободное электромагнитное поле. Самое низкое энергетическое состояние этого поля называют «вакуумом электромагнитного поля».
4. Эне́ргия (др.-греч. ἐνέργεια — «действие, деятельность, сила, мощь») — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется во времени. Это утверждение носит название закона сохранения энергии. Понятие введено Аристотелем в трактате «Физика».
С фундаментальной точки зрения энергия представляет собой интеграл движения (то есть сохраняющуюся при движении величину), связанный, согласно теореме Нётер, с однородностью времени. Таким образом, введение понятия энергии как физической величины целесообразно только в том случае, если рассматриваемая физическая система однородна во времени.
Виды энергии
Механика различает потенциальную энергию (или, в более общем случае, энергию взаимодействия тел или их частей между собой или с внешними полями) и кинетическую энергию (энергия движения). Их сумма называется полной механической энергией.
Энергией обладают все виды полей. По этому признаку различают: электромагнитную (разделяемую иногда на электрическую и магнитную энергии), гравитационную и ядерную энергии (также может быть разделена на энергию слабого и сильного взаимодействий).
Термодинамика рассматривает внутреннюю энергию и иные термодинамические потенциалы.
В химии рассматриваются такие величины, как энергия связи и энтальпия, имеющие размерность энергии, отнесённой к количеству вещества.
Энергия взрыва иногда измеряется в тротиловом эквиваленте.
Кинетическая
Кинетическая энергия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в системе СИ — Джоуль. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленнаядвижением.
Потенциальная
Потенциальная
энергия
— скалярная физическая
величина,
характеризует запас энергии некоего
тела (или материальной точки), находящегося
в потенциальном силовом поле, который
идет на приобретение (изменение)
кинетической энергии тела за счет работы
сил поля. Другое определение: потенциальная
энергия — это функция координат,
являющаяся слагаемым в лагранжиане системы,
и описывающая взаимодействие элементов
системы.[2]
Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином. Единицей измерения энергии в СИ является Джоуль. Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии.
Гравитационная
Гравитационная энергия — потенциальная энергия системы тел (частиц), обусловленная их взаимным тяготением. Гравитационно-связанная система — система, в которой гравитационная энергия больше суммы всех остальных видов энергий (помимо энергии покоя). Общепринята шкала, согласно которой для любой системы тел, находящихся на конечных расстояниях, гравитационная энергия отрицательна, а для бесконечно удалённых, то есть для гравитационно не взаимодействующих тел, гравитационная энергия равна нулю. Полная энергия системы, равная сумме гравитационной и кинетической энергии постоянна, для изолированной системы гравитационная энергия является энергией связи. Системы с положительной полной энергией не могут быть стационарными.
Ядерная
Ядерная энергия (атомная энергия) — это энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях.
Энергия связи — энергия, которая требуется, чтобы разделить ядро на отдельные нуклоны, называется энергией связи. Энергия связи, приходящаяся на один нуклон, неодинакова для разных химических элементов и, даже, изотопов одного и того же химического элемента.