- •З Стор. Міст.
- •Тема 1. Вступ в розділ «Динаміка». Динаміка точки
- •§ 1.1. Предмет і задачі розділу “Динаміка”
- •§ 1.2. Закони класичної механіки.
- •1 Закон (інерції)
- •3 Закон (дії протидії)
- •2 Закон (основний)
- •Динаміка точки.
- •§ 1.3. Диференціальні рівняння руху матеріальної точки. Дві задачі динаміки точки.
- •Рекомендації для практичних занять на тему “Друга задача динаміки точки”
- •Питання для самоконтролю.
- •Динаміка механічної системи.
- •Тема 2. Вступ до “Динаміки механічної системи”.
- •§ 2.1. Структурні та інерційні характеристики механічної системи.
- •Н айменший осьовий момент інерції тіла відносно осі, яка проходить через центр мас.
- •§ 2.2. Осьові моменти інерції деяких твердих однорідних тіл, масою m.
- •§ 2.3. Класифікація сил, їх властивості.
- •§ 2.4. Динамічні рівняння руху системи (для теоретичної моделі).
- •Або в проекціях на осі координат
- •Питання для самоконтролю.
- •Розділ “Загальні теореми динаміки”.
- •Тема 3. Перша загальна теорема динаміки: про зміну кількості руху, або про рух центру мас системи.
- •§ 3.1. Кількість руху точки, системи.
- •§3.2 Теорема про зміну кількості руху (теорема імпульсів).
- •§ 3.3 Закон збереження кількості руху механічної системи ( частинний випадок теореми).
- •Питання для самоконтролю.
- •Тема 4. Теорема про зміну кінетичного моменту. Динамічні рівняння руху твердих тіл.
- •§4.1 Кінетичний момент матеріальної точки та механічної системи.
- •§4.1.1 Кінетичний момент відносно центру.
- •§4.1.2. Кінетичний момент відносно осі.
- •П роекція кінетичного моменту матеріальної точки відносно деякого центру на вісь, яка проходить через цей центр, дорівнює кінетичному моментові точки відносно цієї осі.
- •§4.2. Кінетичний момент тіла відносно осі обертання.
- •§4.3. Теорема про зміну кінетичного моменту.
- •§ 4.4. Диференціальні рівняння простих рухів.
- •§4.5. Динамічні рівняння плоско–паралельного руху твердого тіла.
- •§4.5.1. Теорема про зміну кінетичного моменту механічної системи при відносному русі.
- •§4.5.2. Динамічні рівняння плоского руху.
- •§ 4.6. Наслідки теорем. Закони збереження кінетичних моментів.
- •Рекомендації для практичних занять на тему
- •Питання для самоконтролю.
- •Тема 5. Теорема про зміну кінетичної енергії механічної системи.
- •§ 5.1. Робота і потужність сили та пари сил.
- •§5.2. Приклади обчислення робіт.
- •§5.2.1. Робота сили тяжіння (сили ваги).
- •§5.2.2. Робота сили пружності.
- •§5.2.3. Робота постійної сили.
- •§5.3. Кінетична енергія.
- •§5.3.1. Теорема Кьоніга про кінетичну енергію.
- •§5.3.2. Кінетична енергія твердих тіл.
- •§5.4. Теорема про зміну кінетичної енергії.
- •§5.4.1. Теорема в випадку незмінюваної механічної системи.
- •§5.4.2. Теорема в випадку системи з ідеальними в’язями.
- •§5.5. Інтегральна форма теореми про зміну кінетичної енергії системи.
- •§5.6. Теорема про зміну кінетичної енергії в випадку потенціального силового поля.
- •Рекомендації до практичних занять на тему “ Теорема про зміну кінетичної енергії”.
- •Питання для самоконтролю.
- •Розділ Принципи механіки.
- •Тема 6. Принцип д`Аламбера (умовного зрівноваження сил).
- •§6.1. Принцип д`Аламбера для матеріальної точки.
- •§6.2. Принцип д`Аламбера для механічної системи
- •§6.3. Головний вектор і головний момент сил інерції.
- •§6.4. Головні вектори та головні моменти д’Аламберових сил інерції твердих тіл. (законспектувати самостійно).
- •Рекомендації по застосуванню принципу д’Аламбера (методу кінетостатики)
- •Питання для самоконтролю.
- •Тема 7. Принцип можливих переміщень. Загальне рівняння динаміки.
- •§ 7.1. Класифікація в’язей.
- •§ 7.2. Можливі переміщення.
- •§ 7.3. Число ступенів вільності.
- •§ 7.4. Можлива робота. Ідеальні в’язі.
- •§ 7.5. Принцип можливих переміщень.
- •§ 7.6. Застосування принципу можливих переміщень.
- •§ 7.6.1 Для визначення однієї з активних сил, що діють на систему з одним ступенем вільності.
- •§ 7.6.2. Для визначення реакцій в’язі складеної конструкції.
- •§ 7.7. Загальне рівняння динаміки, або принцип д’Аламбера – Лагранжа.
- •Рекомендації до практичних занять на тему:
- •Питання для самоконтролю.
- •Тема 8. Аналітична механіка в узагальнених координатах.
- •§ 8.1. Узагальнені координати.
- •§ 8.2. Узагальнені сили.
- •§ 8.2.1. Практичний спосіб обчислення - “j”-ої узагальненої сили.
- •§ 8.2.2. Обчислення узагальненої потенціальної сили.
- •§ 8.3. Принцип можливих переміщень в узагальнених координатах.
- •§ 8.4. Загальне рівняння динаміки в узагальнених координатах, або рівняння Лагранжу іі роду.
- •§ 8.5. Рівняння Лагранжу іі роду для консервативних систем.
- •§ 8.6. Застосування рівнянь Лагранжу іі роду для складання диференціальних рівнянь руху практичної моделі механічної системи.
- •Питання для самоконтролю.
- •Тема 9. Динамічне рівняння руху машини.
- •§ 9.2. Зведення сил.
- •§ 9.3. Складання динамічного рівняння руху машини.
- •Розділ. Малі лінійні коливання механічної системи.
- •Тема 10. Вступ в теорію малих лінійних коливань.
- •§ 10.1. Види механічних коливань.
- •§ 10.2. Поняття про стійкість рівноваги. Теорема Лагранжа – Діріхле.
- •§ 10.3. Про особливості методу вивчення малих коливань системи.
- •Метод вивчення.
- •Тема 11. Вільні (власні) коливання механічної системи з одним ступенем вільності.
- •§ 11.1. Постановка задачі Диференціальне рівняння руху.
- •§ 11.2. Закон малих власних вільних коливань.
- •§ 11.3. Властивості руху.
- •Основні властивості власних коливань.
- •Тема 12. Вплив лінійного опору на лінійні власні коливання системи з одним ступенем вільності.
- •§ 12.1. Узагальнена сила опору. Функція Релея.
- •§ 12.2. Постановка задачі. Диференціальне рівняння руху.
- •§ 12.3. Інтегрування диференціального рівняння руху.
- •§ 12.4. Властивості руху при малому опорі.
- •§ 12.5. Аперіодичний рух
- •Тема 13. Вимушені коливання механічної системи з одним ступенем вільності (без врахування опору).
- •§ 13.1. Постановка задачі.
- •§ 13.2. Диференціальне рівняння вимушених коливань.
- •§ 13.3. Рівняння (закон) руху.
- •§ 13.4. Властивості вимушених коливань.
- •§ 13.5. Випадок резонансу.
- •Тема 14. Вимушені коливання механічної системи з одним ступенем вільності з врахуванням лінійного опору.
- •§ 14.1. Постановка задачі.
- •§ 14.2. Інтегрування диференціального рівняння руху. Закон руху.
- •§ 14.3. Властивості вимушених коливань.
- •§ 14.4. Залежність амплітуди та фази вимушених коливань від частоти та фази збурюючої сили.
- •Висновки.
- •Питання для самоконтролю.
Тема 1. Вступ в розділ «Динаміка». Динаміка точки
Література [1] § 1-5
[2] Розд. 3, Гл. 1
§ 1.1. Предмет і задачі розділу “Динаміка”
В розділі “Статика” ми вивчали взаємодію тіл, які знаходились в рівновазі; в “Кінематиці” вивчали рух тіл з геометричної точки зору. Тобто не враховуючи сил, що діяли на тіла.
Розділ “Динаміка” вивчає рух матеріальних об’єктів з врахуванням механічної взаємодії між ними.
Р
Матеріальні об’єкти
Матеріальна точка
Механічна система
Матеріальне тіло
Згадаємо, що є мірами механічної взаємодії? – Сила. Пара сил.
На відміну від розділу “Статика”, де сила була постійною величиною, в “Динаміці”, як і насправді, сили можуть бути змінними. Розглянемо закони зв’язку сили з кінематичними характеристиками руху.
Сили в розділі “Динаміка”. Приклади.
,
в
даній точці Землі.
,
ω – частота струму.
,
с – коефіцієнт жорсткості
пружини.
-
формула Стокса.
Основна задача розділу “Динаміка” – встановити зв’язок діючих сил з кінематичними характеристиками руху матеріальних об’єктів. Назвемо динамічними рівняннями руху – рівняння, які зв’язують між собою характеристики:
інерційні (маса, моменти інерції),
геометричні, конструктивні (кількість тіл, кути, радіуси, в’язі ...),
кінематичні (час, швидкості, прискорення, положення),
міри взаємодії (сили, моменти пар сил).
Тобто це будуть залежності такого вигляду
При всій різноманітності задач, які “Динаміка” розв’язує, можна виділити дві основні задачі. Перша задача : за даними інерційними, конструктивними та кінематичними характеристиками визначити сили. Друга задача : за даними інерційними, конструктивними характеристиками та силами, що діють на об’єкт визначити кінематичні характеристики.
§ 1.2. Закони класичної механіки.
С
Закони класичної механіки
Інерціальна система відліку1 Закон (інерції)
3 Закон (дії протидії)
2 Закон (основний)
П ерший закон. Матеріальна точка зберігає стан спокою , або рівномірного прямолінійного руху доти, поки дія інших тіл не змінить цей стан.
Другий закон – основний. Згадайте
цей закон. Зверніть увагу на те, що не
можна формулювати його так:
,
бо змінюється суть. Треба починати з
прискорення, а не з сили, бо причиною
прискорення є сила.
Прискорення, з яким рухається матеріальна точка, пропорційне прикладеній до точки силі, обернено пропорційне масі, спрямоване вздовж сили.
Я
кщо
декілька сил діють на точку, то, звичайно,
замість однієї сили буде сума сил, тобто
Перші два закони мають місце в інерціальній системі відліку!
Третій закон (закон дії протидії) – два тіла взаємодіють між собою з силами рівними за модулем і протилежним за напрямком.
З
верніть
увагу, що йдеться про два тіла
В
другому законі ми зустрілися з поняттям
маса
Маса – міра інертності тіла при поступальному русі.
Інертність – властивість тіла зберігати стан спокою, чи рівномірного прямолінійного руху. Між масою і вагою тіла є зв’язок
(Чисельна величина прискорення вільного
падіння g
змінюється в залежності від
положення тіла на Землі
)
Поряд з “інертною масою” в механіці є “маса тяжіння”, яка входить в закон всесвітнього тяжіння. Доведено, що чисельні величини цих мас однакові. Одиниці вимірювання: [m] = кг, [F] = H, [a] = м/с2
Почнемо з найпростішого об’єкту вивчення.
