Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
5 раздел_н.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
7.08 Mб
Скачать

§ 5.3. Дифференциальные зависимости между Мх, Qy и q

Здесь – погонная (распределенная) нагрузка на балку в плоскости , она принимается положительной, если направлена вниз, т.е. вдоль оси у. В разделе 1 получены более общие дифференциальные уравнения равновесия прямого бруса (1.7), из которых в нашем случае будем использовать следующие (полагая погонный изгибающий момент):

. (5.4)

. (5.5)

Из двух полученных дифференциальных зависимостей вытекает третья:

. (5.6)

§5.4. Построение эпюр изгибающих моментов и

перерезывающих сил

Для расчетов на прочность необходимо отыскать опасное сечение балки, в котором действуют наибольшие ВСФ. Для этого необходимо знать закон изменения ВСФ в поперечных сечениях балки по ее длине, возникающих от действия на балку нагрузок. Этот закон можно выразить в виде аналитических зависимостей и изобразить с помощью специальных графиков, называемых эпюрами, которые в масштабе изображают значения функций и на протяжении всей балки.

Для определения этих эпюр определяют численные значения моментов и перерезывающих сил для ряда сечений и по ним строят соответствующие эпюры.

На основании зависимостей, характеризуемых выражениями (5.2) и (5.3), легко определить значения и для любого сечения, а затем построить их эпюры.

Условимся: на эпюрах и положительные ординаты откладывать вниз (т.е. вдоль оси у), а отрицательные – вверх от оси балки.

Рассмотрим несколько примеров, из которых можно усвоить технику построения эпюр и .

Пример 5.1.

Рис.5.5

Дано: Двухопорная балка с левой консолью. Нагрузки: 2кН, 1кНм, 2кНм, 1м, 2м, 1,5м, 1кН/м (рис.5.5).

Решение задачи:

I. Начнем с определения опорных реакций: опора В – шарнирно-подвижная, в ней может возникнуть только вертикальная реакция – направим ее

произвольно вверх. Опора А – шарнирно-неподвижная, в ней могут быть две реакции: горизонтальная и – вертикальная, нарисуем их тоже произвольно. Для определения всех реакций составим три уравнения статики для всей балки:

1) Откуда

2) Для определения составим сумму моментов относительно оси х, проходящей через т. А, т.е. . Все внешние моменты, направленные против хода часовой стрелки, считаем положительными. Все погонные нагрузки постоянные, поэтому их равнодействующие действуют в середине участков.

Откуда 1,75кН.

Реакция получилась положительной, следовательно, направив ее вверх, мы угадали ее действительное направление.

3) Для определения составим :

Откуда = 0,75кН.

Обязательно надо сделать проверку реакций, составив еще одно уравнение статики, например, , т.е. суммировать все нагрузки и найденные реакции на ось у: . Получим 0 = 0.

Итак: = 0,75кН; 1,75кН; .

II. Построение эпюр внутренних силовых факторов. В соответствии с характером конструкции балки и нагрузки делим балку на три участка. Эпюры и будем строить по участкам, используя метод сечений и формулы (5.2) и (5.3):

I участок длиной . Проведем сечение в пределах участка. Видно, что проще рассмотреть левую отсеченную часть. Тогда сечение определим расстоянием от т.D. (лев) – пределы изменения .

,

т.е. эпюра линейна, поэтому для ее построения достаточно двух точек.

,

т.е. эпюра меняется по закону квадратной параболы, поэтому необходимо не менее трех точек на ней.

Посчитаем величины и при следующих значениях :

.

Строим эпюры и на этом участке, откладывая в масштабе отрицательные значения и вверх от оси бруса.

II участок длиной . Рассмотрим тоже левую часть (лев):

Считаем:

Строим эпюры и на этом участке, учитывая, что для построения надо два значения (линейная зависимость), а для построения необходимо не менее трех значений в пределах участка (парабола).

III участок. Проводим сечение, видно, что проще рассмотреть правую отсеченную часть. В этом случае расстояние до сечения будем отсчитывать от опоры А, (правая часть):

а) ;

б) .

Считаем: .

Эпюра линейна, строим ее по двум точкам. Видно, что при некотором значении эпюра меняет знак, т.е. = 0, а согласно зависимости (5.4) в этом сечении величина принимает экстремальное значение. Подставим в формулу а) = 0 при : , отсюда 0,75 м. Подставим = 0,75 м в формулу б) и найдем  = 2,28 кНм. Это будет третьей точкой для построения эпюры .

Экстремальные значения при построении эпюр вычислять обязательно.

На эпюрах ставим знаки, размерность величин, штриховка перпендикулярна к оси бруса (вертикальная).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]