
- •Зміст курсу
- •1.Промисловість та екологія.
- •1.1.Вклад промисловості в забруднення навколишнього середовища
- •1.2.Види і джерела забруднення довкілля, небезпечні чинники їх дії.
- •Атмосферне повітря є життєво важливим компонентом природного довкілля, невід'ємною частиною місця існування людини, рослин і тварин.
- •1.3. Міжнародні угоди в області охорони навколишнього середовища.
- •2.Захист атмосферного повітря від техногенного забруднення.
- •2.1.Гігієнічні нормативи допустимого вмісту хімічних і біологічних речовин в атмосферному повітрі населених місць.
- •2.2. Джерела забруднення атмосфери.
- •Концентрації хімічних елементів в пилу різних виробництв
- •Вміст бенз(а)пірену в димових газах котлів тес, мкг/100м3
- •Концентрація оксиду вуглецю та бенз(а)пірену у вихлопних газах бензинового двигуна.
- •Альтернативні двигуни
- •Пошук нових видів палива. Поряд з кардинальними рекомендаціями робляться спроби створити присадки і домішки до звичайного палива, які могли б понизити токсичність відпрацьованих газів автомобілів.
- •Викиди забруднюючих речовин в хімічному виробництві
- •Методи знезаражування відпрацьованих газів.
- •2.3. Захист атмосферного повітря від викидів промислового пилу
- •Біля стінки пиловловлювача;
- •Vmax — максимальна швидкість пилинок; у — лімітуюча товщина шару;
- •Класифікація пиловловлювачів
- •Характеристика основних видів пиловловлювачів
- •І багатошаровою(б) насадками
- •Очищений газ
- •2.3.Захист атмосферного повітря від промислових викидів паро- і газоподібних шкідливих речовин
- •3.Захист водних та земельних ресурсів від техногенного забруднення
- •3.1. Джерела забруднення водних об'єктів
- •Показники складу побутових і промислових стічних вод великого міста (1980-1984 рр.)
- •Основні види забруднень промислових стічних вод
- •Характеристика поверхневого стоку деяких промислових підприємств, мг/л
- •Хімічний склад стічних вод тваринницьких комплексів
- •Винос азоту і фосфору із сільськогосподарських угідь
- •Винос пестицидів з сільськогосподарських угідь
- •Хімічний склад шахтних вод Донбасу, мг/л
- •3.2. Системи водопостачання та водовідведення населених міст і промислових підприємств
- •А) з охолодженням, б) з очищенням; в) з очищенням і охолодженням.
- •3.3.Захист водних ресурсів від промислових викидів
- •Еколого-санітарна класифікація якості поверхневих вод
- •Орієнтовна шкала оцінки забруднення водних систем
- •3.4. Захист земельних ресурсів від промислових викидів
- •050 Ц/га, Бразилії - 16 ц/га, Росії - 18 ц/га, Індії - 13 ц/га. В Україні середня врожайність зерна становить 24,2 ц/га .
- •5.Охорона довкілля та екологічний моніторинг
- •5.2 Екологічний моніторинг
- •5.3.Глобальна система моніторингу навколишнього середовища (гсмнс)
- •5.4.Кліматичний моніторинг і його завдання
- •Організація роботи системи державного моніторингу навколишнього природного середовища
- •Література
Методи знезаражування відпрацьованих газів.
Нейтралізатор – це невеликий прилад, призначений для спалювання токсичних відпрацьованих газів шляхом допалювання продуктів неповного згорання (СО, СН, SО) і розкладання окислів азоту на складові елементи – азот і кисень. Відомі рідинні, каталітичні, термічні та комбіновані нейтралізатори.
Принцип дії рідинних нейтралізаторів ґрунтується на розчиненні або хімічній взаємодії токсичних компонентів відпрацьованих газів при пропусканні їх через рідину певного складу: воду, водний розчин сульфіту натрію, водний розчин двовуглекислої соди.
На рис. 2.3 наведена схема рідинного нейтралізатора, яка застосо-вується з двотактним дизельним двигуном. Відпрацьовані гази надходять в нейтралізатор трубою 1 і через колектор 2 потрапляють в бак 3, де всту-пають в реакцію з робочою рідиною. Очищені гази проходять через фільтр 4, сепаратор 5 і викидаються я атмосферу. При випаровуванні рідину доливають в робочий бак з додаткового бака 6.
Рисунок 2.3 – Схема рідинного нейтралізатора:
1 – впускна труба; 2 – колектор; 3 – робочий бак з рідиною; 4 – фільтр; 5 – сепаратор; 6 – додатковий бак
Пропускання відпрацьованих газів через воду приводить до зменшення запаху, альдегіди поглинаються з ефективністю до 5%, а ефективність очищення від сажі досягає 60…80%. При цьому трохи зменшується вміст бенз(а)пирену у відпрацьованих газах. Температура газів після рідинного очищення складає 40...80°С, приблизно до цієї жтемпе-ратури нагрівається і робоча рідина. При зниженні температури процес очищення протікає інтенсивніше.
Рідинні нейтралізатори не вимагають часу для виходу на робочий режим після пуску холодного двигуна. Недоліки рідинних нейтралізаторів:
- велика маса і габарити;
- необхідність частої заміни робочого розчину;
- неефективність відносно до СО;
- мала ефективність (50%) відносно до NO2;
- інтенсивне випаровування рідини.
Проте використання рідинних нейтралізаторів в комбінованих системах очищення може бути раціональним, особливо для установок, відпрацьовані гази яких повинні мати низьку температуру при надход-женні в атмосферу.
При розрахунку рідинного нейтралізатора визначають його основні розміри і необхідну кількість розчину для роботи на протязі певного часу. Нейтралізатор, який застосовується для дизельних автосамоскидів МАЗ, – це металева стальна конструкція прямокутної форми висотою 530 мм, шириною 608 мм з вмістом у робочому бакові 55 л розчину.
Середні значення концентрацій шкідливих компонентів відпрацьованих газів до і після рідинного нейтралізатора, одержані на самоскиді МАЗ-5335, наведені в табл. 2.12.
Таблиця 2.12
Ефективність очищення газів рідинними нейтралізаторами
Речовина |
Концентрація , частки, % |
Ступінь очищення, % |
|
До іонізації |
Після іонізації |
||
CO |
0,06 |
0,06 |
0 |
NO2 |
0,002 |
0,001 |
50 |
Альдегіди |
0,0144 |
0,003 |
98 |
SO2 |
0,008 |
0 |
100 |
Каталітична нейтралізація відпрацьованих газів ДВЗ на поверхні твердого каталізатора відбувається за рахунок хімічних перетворень (реакції окислення чи відновлення), внаслідок яких утворюються нешкідливі або мало шкідливі для навколишнього середовища і здоров’я людини з’єднання.
Каталізатори на основі благородних металів (платина, паладій, рутеній, радій тощо) найбільш широко використовують для очищення відпрацьованих газів ДВЗ. Ці каталізатори характеризуються хорошою селективністю в реакціях нейтралізації токсичних компонентів, низькими температурами початку ефективної роботи, достатньою температуростійкістю, довговічністю і здатністю стійко працювати при високих швидкостях газового потоку. Основний недолік каталізаторів цього типу – їх висока вартість.
Для нейтралізації відпрацьованих газів NOx, CO і CnHm застосовують двоступеневий каталітичний нейтралізатор (рис. 2.4).
Рисунок 2.4 – Схема двокамерного каталітичного нейтралізатора:
1 – впускний патрубок; 2 – корпус; 3 – каталізатор нейтралізації окислів азоту;
4 – патрубок для додаткового повітря; 5 – каталізатор окислення CO і CnHm;
6 – випускний патрубок
Відпрацьовані гази надходять до відновлюваного каталізатора 3, на якому нейтралізація окислів азоту відбувається за реакцією (для ДВЗ з іскровим запалюванням NOx на 99% складається з NO).
;
;
Для забезпечення відновлювального середовища перед першим ступенем нейтралізатора двигун повинен бути відрегульованим для роботи з α (кутом випередження запалювання суміші), близьким до стехіометричного. При α > 1,05 активність каталізатора різко зменшується (середовище стає окислювальним).
Після відновлювального каталізатора до відпрацьованих газів для створення окислювального середовища підводиться через патрубок 4 вторинне повітря. На окислювальному каталізаторі відбувається нейтра-лізація продуктів неповного згорання СО і CnHm. Основними процесами є окислення окису вуглецю і вуглеводнів:
;
;
Результати випробувань автомобіля з двоступеневим каталітичним нейтралізатором (в 1-му ступені – мідно-нікелевий сплав, у 2-му – платина) наведені в табл. 2.13.
Таблиця 2.13
Ефективність роботи каталітичного двокамерного нейтралі-затора
Автомобіль |
Концентрація токсичних речовин |
||
NOx, мг/м3 |
CnHm, % |
СO, мг/м3 |
|
Без нейтралізатора |
1759 |
100 |
9100 |
З нейтралізатором |
283 |
46 |
3500 |
Ефективність, % |
83,9 |
54 |
61,5 |
Каталітичні нейтралізатори конструктивно складаються з вхідного і вихідногопристроїв,корпусаі поміщеногов ньому реактора. Розроблені каталітичні нейтралізатори (рис. 2.5) для відпрацьованих газів ДВЗ транс-портнихзасобів з бензиновими і дизельними двигунами.
Каталітичні нейтралізатори знижують у відпрацьованих газах (ВГ) вміст СО на 70...90%,CnHm – на 50...85%. Основні параметри каталітичних нейтралі-заторів для автобусаЛІАЗ-5256 такі: об’єм реактора2,5дм3; довжина 553 мм; ширина307 мм; висота 243 мм; маса 15 кг.
Рисунок 2.5 – Каталітичний нейтралізатор для бензинового ДВЗ:
1 – вхідний патрубок; 2 – реактор; 3 – корпус; 4 – вихідний патрубок
Схема встановлення каталітичного нейтралізатора в системі ДВЗ наведена на рис. 2.6. Відпрацьовані гази від двигуна 1 надходять випускною трубою 2 до каталітичного нейтралізатора 3, після чого викидаються в атмосферу. Для підтримання необхідної температури газів у нейтралізаторі використовується електронний блок 4, який регулює клапаном 5 подачу повітря через ресивер6 ізворотнийклапан7 з атмосфери в нейтралізатор.
Рисунок 2.6 – Схема встановлення каталітичного нейтралізатора:
1 – двигун; 2 – випускна труба; 3 – каталітичний нейтралізатор; 4 – елек-тронний блок; 5 – регулювальний клапан; 6 – ресивер;7 – зворотний клапан
Термічні нейтралізатори, встановлені за випускним трубопроводом, здійснюють полум’яне допалювання окису вуглецю СО і перетворення його у вуглекислий газ СО2 а також спалювання неспалених в циліндрі вуглеводнів і альдегідів. Для інтенсифікації допалювання в камеру термореактора подається додаткове повітря. Реакція окислення проходить при температурі 500...600°С і зменшує наявність вуглеводнів приблизно в 2 рази, а окису вуглецю – в 2...З рази.
Рисунок 2.7 – Схема термічного реактора:
1 – жарова труба; 2 – повітряний прошарок; 3 – шар азбесту; 4 – трубопровід для повітря.
На нових автомобілях термореактори розміщують у випускній системі двигуна з відповідними змінами в цій частині конструкції двигуна для нейтралізації картерних газів.
Схема термічного реактора наведена на рис. 2.7. Це – жарова труба 1, в якій забезпечується збільшення часу перебування відпрацьованих газів шляхом неодноразової зміни їх руху. Ця труба повітряним прошарком 2 і шаром кераміки чи азбесту 3 ізольована від корпуса. Перед тим, як відпрацьовані гази попадають в термічний реактор, до них в певному співвідношенні підмішується повітря через трубопровід 4.
Внаслідок хорошої теплоізоляції а також виділення тепла на деяких режимах при окисленні СО і CnHm в жаровій трубі підтримується темпе-ратура, яка забезпечує ефективне окислення продуктів неповного згорання.
Одна а різновидностей термічних реакторів – полум’яні допалювачі, в яких підтримується горіння шляхом подачі палива і повітря. При попа-данні відпрацьованих газів в такі допалювачі відбувається допалювання продуктів неповного згорання у факелі полум’я.
На бензинових двигунах – перспективні термічні реактори, які пра- цюють на сильно збіднених паливно-повітряних сумішах. В цьому випадку виключається необхідність подачі додаткового повітря. Ефективним при цьому є використання також комбінованих нейтралізаторів термічного і каталітичного, при яких забезпечується зниження всіх основних шкідливих речовин бензинових двигунів.