
- •Темы и объем лабораторных занятий (академические часы)
- •Введение
- •Лабораторная работа №1 Основы работы с MathCad Цель работы
- •Методические указания
- •Операторы
- •Типы данных
- •Функции
- •Текстовые фрагменты
- •Графические области
- •2. Traces (след) – управляет параметрами линий, которыми строится график
- •3. Labels (метки) – установка надписей по осям и титульной надписи
- •4. Defaults (умолчание) – задание режима по умолчанию
- •Порядок выполнения лабораторной работы
- •Вопросы для самоконтроля
- •Лабораторная работа № 2 Работа с векторами и матрицами в системе mathcad Цель работы
- •Методические указания
- •Задание на лабораторную работу
- •Вопросы для самоконтроля
- •Лабораторная работа №3 Решение систем уравнений Цель работы
- •Методические указания
- •Задание на лабораторную работу
- •Вопросы для самоконтроля
- •Лабораторная работа №4 Решение нелинейных уравнений Цель работы
- •Методические указания
- •Метод половинного деления
- •Метод хорд
- •Метод Ньютона
- •Метод простой итерации (последовательных итераций)
- •Задание на лабораторную работу
- •Вопросы для самоконтроля
- •Лабораторная работа №5 Интерполяция функций Цель работы
- •Методические указания
- •Задание к лабораторной работе
- •Вопросы для самоконтроля
- •Лабораторная работа № 6 Аппроксимация функций. Построение регрессионных зависимостей методом наименьших квадратов. Цель работы
- •Методические указания
- •Задание к лабораторной работе
- •Вопросы для самоконтроля
- •Лабораторная работа №7 Основы программирования в пакете MathCad Цель работы
- •Методические указания
- •Задание на лабораторную работу
- •Задание к лабораторной работе
- •Вопросы для самоконтроля
- •Лабораторная работа № 9 Решение дифференциальных уравнений методом символьного интегрирования Цель работы
- •Методические указания
- •Задание на лабораторную работу
- •Вопросы для самоконтроля
- •Задание к лабораторной работе
- •Вопросы для самоконтроля
- •Задание на лабораторную работу
- •1. Цель курсовой работы
- •2. Введение
- •3. Аналитические методы
- •3.1 Классический метод
- •3.2. Метод операционного исчисления
- •4. Численный метод решения дифференциальных уравнений
- •5. Задание на курсовую работу
- •5.1. Выбор варианта
- •5.2. Порядок действий
- •Требования к пояснительной записке:
- •Приложение: Примеры выполнения этапов курсовой работы
- •Рекомендуемая литература.
- •65029. Одесса-29, Дидрихсона, 8.
Вопросы для самоконтроля
Какие уравнения называются матричными? Назовите способы их решения
Назовите встроенные функции для решения систем уравнений в MathCAD и особенности их применения.
Опишите структуру блока решения уравнений. (Какой знак равенства используется в блоке решения? какой комбинацией клавиш он вставляется в документ? какие выражения не допустимы внутри блока решения уравнения?)
Опишите способы использования функции Find и Minerr и дайте их сравнительную характеристику. Как использовать эти функции для получения ответа в точном и приближенном видах?
Как символьно решить систему уравнений в MathCAD? Каковы особенности использования символьного метода решения уравнений?
В чем заключаются особенности методов решения систем нелинейных уравнений?
В каких случаях MathCAD не может найти решение системы уравнений?
Лабораторная работа №4 Решение нелинейных уравнений Цель работы
Ознакомиться с основными методами решения нелинейных уравнений и их реализацией в пакете MathCAD.
Методические указания
Инженеру часто приходится составлять и решать нелинейные уравнения, что может представлять собой самостоятельную задачу или являться частью более сложных задач. В обоих случаях практическая ценность метода решения определяется быстротой и эффективностью полученного решения, а выбор подходящего метода зависит от характера рассматриваемой задачи. Важно отметить, что к результатам компьютерных вычислений всегда нужно относиться критически, анализировать их на правдоподобность. Чтобы избежать "подводных камней" при использовании любого стандартного пакета, реализующего численные методы, нужно иметь хотя бы минимальное представление о том, какой именно численный метод реализован для решения той или иной задачи.
Нелинейные уравнения можно разделить на 2 класса – алгебраические и трансцендентные. Алгебраическими уравнениями называют уравнения, содержащие только алгебраические функции (целые – в частности многочлен, рациональные, иррациональные). Уравнения, содержащие другие функции (тригонометрические, показательные, логарифмические и др.) называются трансцендентными. Нелинейные уравнения могут решаться точными или приближенными методами. Точные методы позволяют записать корни в виде некоторого конечного соотношения (формулы). К сожалению, большинство трансцендентных уравнений, а также произвольные алгебраические уравнения степени выше четвертой не имеют аналитических решений. Кроме того, коэффициенты уравнения могут быть известны лишь приблизительно и, следовательно, сама задача о точном определении корней теряет смысл. Поэтому для решения используются итерационные методы последовательного приближения. Вначале следует вначале отделить корни (т.е. найти их приближенное значение или отрезок их содержащий), а затем методом последовательных приближений их уточнить. Отделить корни можно – установив знаки функции f(x) и ее производной в граничных точках области ее существования, оценив приближенные значения из физического смысла задачи, или из решения аналогичной задачи при других исходных данных.
Широко
распространен графический
способ
определения приближенных значений
действительных корней – строят график
функции f(x)
и отмечают точки пересечения его с осью
ОХ. Построение
графиков часто удается упростить,
заменив уравнение f(x)=0
равносильным
ему уравнением
,
где функции
f1(x)
и f2(x)
- более простые, чем функция
f(x).
В этом случае следует искать точку
пересечения этих графиков.
Пример
1. Графически
отделить корни уравнения x
lg
x
= 1. Перепишем
его в виде равенства lg
x=1/x
и найдем
абсциссы точек
пересечения логарифмической кривой y
= lg x и
гиперболы y
= 1/x
(рис. 5). Видно, что единственный корень
уравнения
.
Рис. 5. Метод графического отделения корней |
Реализация классических приближенных методов решения в пакете MathCAD.