
- •Электротехника
- •1.Электрические цепи постоянного тока
- •1.1. Основные понятия и обозначения электрических цепей
- •1.2. Характеристики и схемы замещения источников и приемников электрической энергии
- •Источники в электрических цепях.
- •Источник тока.
- •1.3. Основные законы электрических цепей.
- •Законы Кирхгофа
- •Метод узловых потенциалов.
- •Метод эквивалентного генератора.
- •Метод эквивалентного источника тока
- •Метод наложения
- •1.4. Передача электрической энергии от источника к потребителю. Мощность в цепях постоянного тока.
- •1.5. Нелинейные электрические цепи постоянного тока
- •1.6. Контрольные работы по цепям постоянного тока
- •Пример использования маткада при решении задач по цепям постоянного тока
- •3. Правила по охране труда
- •Задания
- •2.Электрические цепи однофазного синусоидального переменного тока
- •2.1. Получение э.Д.С., синусоидально изменяющееся во времени
- •Пример использования маткада при решении задач по однофазным цепям переменного тока
- •Однофазные цепи переменного тока
- •2.10Лабораторная работа по однофазным синусоидальным цепям переменного тока. (Лабораторная работа n3) Исследование линейных электрических цепей переменного тока
- •Задания
- •Собрать электрическую схему (рис. 3.1). Предъявить схему для проверки преподавателю.
- •По результатам измерений п. 1.5 и 1.7 вычислить и записать величины, указанные в правой части табл. 3.1.
- •По данным табл. 3.1 построить графики зависимостей:
- •Сделать вывод о том, как зависят z, I, cosφ, р и s от емкостного сопротивления конденсатора Хс.
- •Собрать электрическую схему (рис. 3.2). Предъявить схему для проверки преподавателю.
- •Перед включением электрической цепи убедиться, что ручка лatPa находится на нуле. Включить s45 и s12, с помощью пере-
- •Измерительные приборы электромагнитной и электродинамических систем
- •3. Периодические несинусоидальные токи и напряжения в электрических цепях
- •3.1.Характеристики несинусоидальных величин, разложение в ряд Фурье.
- •3.4.Активная,реактивная,полная мощность при несинусоидальных токах и напряжениях.
- •4.2.Соединение приемников «звездой»
- •4.3.Соединение нагрузки «треугольником»
- •4.4. Варианты контрольных работ
- •4.5. Лабораторная работа по трехфазным цепям переменного тока
- •2.4. Правила по технике безопасности
- •2.6. Порядок выполнения работы
- •2.6.1. Исследование трехфазного источника
- •2.6.2. Исследование трехфазной цепи при соединении приемников в звезду с нейтральным проводом
- •2.6.2. Исследование трехфазной цепи при соединении приемников в звезду без нейтрального провода
- •2.6.3. Исследование трехфазной цепи при соединении приемников в треугольник
- •5. Переходные процессы в линейных электрических цепях
- •5.1.Опредедление переходного процесса, законы коммутации.
- •5.2.Переходный процесс в цепях r,l
- •5.3. Переходные процессы в цепи r,c.
- •5.4..Переходный процесс в цепи r,c,l.
- •1.1.Основные параметры и характеристики выпрямителей
- •Основные характеристики различных схем выпрямления.
- •1.2. Однофазный однополупериодный выпрямитель
- •1.4. Однофазный двухполупериодный мостовой выпрямитель
- •1.4. Однофазный двухполупериодный мостовой выпрямитель.
- •1.5. Трехфазный двухполупериодный выпрямитель со средней точкой трансформатора
- •1.6. Трехфазный двухполупериодный мостовой выпрямитель
- •1.7. Фильтры
- •1.8. Стабилизаторы напряжения
- •1.9. Примеры расчетов выпрямителей на полупроводниковых диодах
- •Решение:
- •Решение:
- •1.Выбираем параметры указанных диодов и записываем их в таблицу
- •1.10 . Контрольная работа по выпрямителям на полупроводниковых диодах
- •2.Управляемые выпрямители
- •2.1. Тиристоры их параметры и характеристики
- •2.2. Однофазный однополупериодный тиристорный управляемый выпрямитель
- •2.3. Однофазный двухполупериодный тиристорный управляемый выпрямитель со средней точкой трансформатора
- •2.4. . Однофазный двухполупериодный мостовой тиристорный управляемый выпрямитель
- •2.4. . Однофазный двухполупериодный мостовой тиристорный управляемый выпрямитель
- •2.5. Трехфазный двухполупериодный тиристорный управляемый выпрямитель со средней точкой трансформатора
- •2.7. Тиристорный ключ постоянного тока
- •3.. Преобразователи постоянного напряжения в переменное
- •3.1. Автономный инвертор
- •2.7.Лабораторная работа по выпрямителям
- •Исследование двухполупериодного мостового выпрямителя без фильтра
- •Исследование двухполупериодного мостового выпрямителя с емкостным фильтром
- •Исследование двух полупериодного мостового выпрямителя
- •Исследование управляемого выпрямителя
- •4.Транзисторные усилители
- •4.1. Биполярные транзисторы
- •4.2.Полевые транзисторы
- •4.3. Основные схемы усилителей
- •Включение транзистора по схеме с оэ
- •4.4. Обратные связи в усилителях
- •4.5. Генераторы синусоидальных колебаний
- •4.6. Примеры расчета схем на биполярных транзисторах
- •4.7. Контрольная работа по усилителям на биполярных транзисторах
- •4 . .Лабораторная работа по транзисторным усилителям
- •Транзисторы, основные характеристики транзисторов
- •5.Операционные усилители постоянного тока
- •5.1. Основные параметры и характеристики усилителей постоянного тока (оу)
- •5.2. Основные схемы усилителей постоянного тока
- •Электродвигатели
- •Электродвигатели постоянного тока (дпт)
- •Конструкция и принцип работы дпт
- •Электродвигатели постоянного тока
- •2. Электродвигатели переменного тока асинхронные (ад)
- •Эдс статора.
- •Эдс ротора.
- •Механическая характеристика асинхронного двигателя
- •Электромагнитный момент асинхронной машины
- •Регулирование частоты вращения асинхронных двигателей
- •Изменение частоты источника питания
- •3. Электродвигатели переменного тока синхронные (сд)
- •4. Выбор и расчет мощности электродвигателей
- •Р 1 4 t м,р 4 3 2 ежимы работы электродвигателя
- •Расчет мощности
- •5.5. Контрольные работы по электродвигателям ад и дпт Контрольная работа по электродвигателям ад
- •Контрольная работа по электродвигателям дпт
- •5. Основы электропривода
- •5.1.Применение обратных связей для управления электродвигателями
- •Общий подход к синтезу электроприводов с обратной связью
- •Основные схемы регуляторов
- •Пропорционально – дифференциальный регулятор (пд - регулятор)
- •Пропорционально – интегрально – дифференциальный регулятор (пид – регулятор) рис. 1.9
- •5.4. Синтез электроприводов с последовательными корректирующими устройствами, регуляторами
- •5.5. Синтез электроприводов с параллельными корректирующими устройствами, регуляторами
- •5.6. Синтез электроприводов с последовательными и параллельными корректирующими устройствами, регуляторами]
- •5.7. Принципы построения систем подчиненного регулирования в электроприводах
- •5.8. . Основные технические характеристики электроприводов
- •Динамические характеристики
- •5.9. Электропривода с двигателями постоянного тока, цифровые виртуальные модели. Математические модели двигателя постоянного тока с независимым возбуждением
- •Математическая модель двигателя постоянного тока с последовательным возбуждением.
- •Электромагнитные процессы в системе шип-дпт
- •Электропривод постоянного тока на базе широтно-импульсного преобразователя
- •Электропривод эт3и
- •Электропривод эт6
- •Электропривод серии эту3601
- •Электропривод серии эшир-1
- •Электроприводы главного движения эт3, этзд, этрп
- •Электроприводы серии этрп
- •5.10. Электропривода с двигателями переменного тока,
- •Преобразователи координат и фаз
- •Асинхронная машина с короткозамкнутым ротором.
- •Анализ акз во вращающейся системе координат.
- •Разомкнутая система асинхронный короткозамкнутый двигатель – автономный инвертор с синусоидальной широтно-импульсной модуляцией (акз – аин с шим)
- •Классификация законов управления асинхронным электроприводом
- •Асинхронные электроприводы с векторным управлением Построение частотно-токового асинхронного электропривода с векторным управлением
- •Электромагнитные процессы в замкнутом асинхронном электроприводе
- •Вентильная машина
- •Математическое описание вентильной машины
- •Модель вентильной машины в неподвижной системе координат
- •Модель вентильной машины во вращающейся системе координат
- •Модель вентильной машины во вращающейся системе координат с учетом запаздывания в канале вт-дм-ф.
- •Электропривод с вентильным двигателем
- •Преобразователь частоты серии тпч
- •Преобразователь частоты серии птчкш
- •Преобразователи серии пч-4-200 и пч-3,5-3200. [3]
- •Электроприводы переменного тока серии экт (эктр)
- •Следящий электропривод подачи с асинхронным двигателем переменного тока . Размер 2м-5-2.
Электроприводы переменного тока серии экт (эктр)
Электроприводы выпускаются в двух модификациях, обладающих режимом частотного пуска с регулируемым темпом. Электроприводы ЭКТР обеспечивают рекуперативное торможение. Кроме того, электроприводы разделяются по номинальной выходной частоте, причем электроприводы с номинальными частотой 200 Гц и напряжением 380 В имеют рабочий диапазон регулирования частоты 5-80 Гц и диапазон максимального изменения частот 200 Гц и напряжением 220 В характеризуется соответственно диапазонами 15-250 и 5-250 Гц. У низкочастотных электроприводов(ЭКТ-20/380,ЭКТ-63/380, ЭКТ-100/380) КПД находится в пределах от 0,9 до 0,93 (для разных типоразмеров), а коэффициент мощности принимает значения 0,15-0Б95 (для разных режимов работы). У высокочастотных электроприводов (ЭКТ-50/220,ЭКТ-100/220,ЭКТ-160/220,ЭКТ-250/220) эти параметры составляют от 0,85 до 0,9. Среди выпускаемых электроприводов имеются типоразмеры со следующими номинальными мощностями.
Те же мощности имеют электроприводы ЭКТР. Допускается перегрузка по току кратностью два (по отношению к номинальной величине) в течении 10с для электропривода на номинальное напряжение 380 В и 1,5/120 с для электропривода на напряжение 220 В. Нестабильность частоты не более+0,5% и -0,5% .
Электропривод рис 3.33 включает в себя управляемый выпрямитель, инвертор, ведомый сетью, ИВС для ЭКТР, которыми управляет система управления СУВ с датчиком запирания мостов (ДЗМ), фильтр, устройство силового токоограничения (СТ), инвертор напряжения (ИН) с источником подзаряда конденсаторов (ИПК) и системой управления СУИ, обратный мост вентилей ОМ, систему защиты и сигнализации (СЭС) с датчиком входного
Рис.3.33. Электропривод переменного тока
тока (ДТ1) выпрямителя, САР с датчиками ДТ2 и ДЭ . Электроприводы к выходным номинальным напряжением 220 В содержат понижающий (согласующий) трансформатор, а с напряжением 380 В – токоограничивающие реакторы (дроссели). Параллельно тиристорам инвертора установлены защитные цепи из вентиля, резистора и конденсатора УВ и ИВС представляют собой тиристорные полностью управляемые трехфазные мосты, включенные встречно-парллельно по схеме раздельного управления.
Электроприводы допускают управление от местного или дистанционного пульта. Блок системы управления выпрямителем СУВ (рис 75,б) содержит следующие ячейки: питания, согласования (ЯС), формирователей импульсов (ЯФИ) и усилителей (ЯУ). Каждая из трех ячеек формирователей образует импульсы для отпирания тиристоров одной фазы выпрямителя. Ячейка формирователей импульсов (ЯФИ) включает в себя следующие функциональные узлы: формирователь синхронизирующих импульсов, генератор пилообразного напряжения (ГПН), компаратор (К), триггер формирователь длительности импульсов (ФДИ), распределитель импульсов, ключевые усилители импульсов (КУ). На вход формирователя синхронизирующих импульсов поступает трехфазное синусоидальное напряжение. Этот формирователь синхронизирует ГПН, триггер и распределитель импульсов. Схема обеспечивает симметрию (идентичность) импульсов ГПН разных каналов. Импульсы ГПН подаются компаратор, который срабатывает в момент равенства пилообразного напряжения и напряжения управления. При этом переключается триггер и формируются импульсы длительностью0,5 мс. Распределитель передаёт импульсы по противофазным канала. Затем в узле ЛС происходит логическое сложение импульсов данного и следующего по фазировке канала. Сдвоенные импульсы предварительно усиливаются и поступают через ячейку усилителей на первичные обмотки импульсных трансформаторов. Напряжение управления зависит от выходного сигнала регулирования.
Сигнал управления вырабатывается операционным усилителем. Угол управления ограничивается по минимуму и по максимуму.
Система автоматического регулирования (рис.3.51, а ) содержит регулятор тока (РТ), регулятор ЭДС (РЭ), усилитель-ограничитель (УО) и усилитель постоянного тока (УПТ), устройство устранения автоколебаний (УУА) и Задатчик интенсивности (ЗИ). САР через ЗИ управляет пуском, торможением и реверсом с регулируемым темпом. Система регулирования имеет два канала стабилизации: напряжения (ЭДС) и частоты. Полярность задающего напряжения на выходе САР определяет направление вращения и соответствующие сигналы («Вперёд» или «Назад»), выдаваемые системой автоматического регулирования в систему управления инвертором. Электропривод имеет двухзонное регулирование частоты вращения. При частотах вращения ниже номинальной отношение ЭДС к частоте поддерживается постоянным при регулировании частоты вращения выше номинальной ЭДС двигателя остаётся постоянной. Двухконтурная САР содержит внутренний контур стабилизации выходного тока преобразователя частоты и внешний – ЭДС двигателя. Регуляторы РТ и РЭ работают по пропорционально – интегральному принципу . РТ позволяет ограничить выходной ток преобразователя. Регуляторы выполнены на операционных усилителях.
Если во время переходных процессов (разгоне и торможении) отношение ЭДС двигателя к частоте отличается от постоянного, то прекращается рост сигнала ЗИ. В результате становятся постоянными выходные частота и напряжение инвертора. После того как указанное выше отношение приблизится к постоянному, сигнал задатчика интенсивности вновь начинает линейно изменяться. Благодаря такой коррекции ограничивается рост напряжения на конденсаторе фильтра при торможении. На вход устройства устранения автоколебаний подаётся сигнал, пропорциональный ЭДС двигателя. Выходное напряжение УУА поступает на задающий генератор. Благодаря изменению частоты инвертора устраняются автоколебания в системе преобразователь частот – двигатель. В установившемся режиме, если увеличивается ток двигателя (снижается ЭДС), то УУА воздействует на уменьшение частоты. При сбросе нагрузки выходная частота увеличивается. Таким образом, устройство способствует стабилизации отношения ЭДС к частоте. Система защиты и сигнализации (СЗС) выдаёт команды на выключение и отключение преобразователя, выполняет функции защиты, контроля и сигнализации. При коротком замыкании (срыве) инвертора протекает большой ток разряда силового фильтра через анодный и катодный тиристоры одной фазы инвертора устраняются автоколебания в системе преобразователь частоты – двигатель. В установившемся режиме, если увеличивается ток двигателя (снижается ЭДС), то УУА воздействует на уменьшение частоты. При сбросе нагрузки выходная частота увеличивается. Таким образом, устройство способствует стабилизации отношения ЭДС к частоте.
Система защиты и сигнализации (СЗС) выдает команды на включение и отключение преобразователя, выполняет функции защиты, контроля и сигнализации. При коротком замыкании (срыве) инвертора протекает большой ток разряда силового фильтра через анодный и катодный тиристоры одной фазы инвертора. При этом по сигналу датчика срыва инвертора, установленного последовательно в звене постоянного тока, срабатывает силовое токоограничение, снимаются выходные импульсы СУИ, отключается вводной автомат, имеющий дистанционное управление. Параллельно соединенные тиристоры силового токоограничения разряжают энергию конденсатора фильтра через дроссели (выполняют функцию короткозамыкателя). Благодаря этому защищаются тиристоры инвертора. После устранения короткого замыкания снимается сигнал датчика срыва инвертора и происходит автоматическое повторное включение вводного автомата и соответственно электропривода. При каротковременном исчезновении или снижении напряжения сети также снимаются выходные импульсы СУИ и отключается вводной автомат. Подобным же образом включается электропривод от кнопки «Выкл.». Если напряжение сети восстановится за время мене 1,5 с, то произойдет автоматическое повторное выключение.
Если входной ток, потребляемый преобразователем из сети (датчик ДТ1), превосходит уровень уставки, то снимаются задающий сигнал и выходные импульсы, включается силовое токоограничение и отключается вводной автомат. Как только
Рис. 3.34. Схема управления.
начинает срабатывать защита, зажигается лампа «Максимальная защита». Кроме того имеется тепловая защита, которая отключает электропривод в приложение 10 с превышает допустимую величину. На срабатывание защиты указывает загорание лампы «Перегрузка». В обоих случаях для повторного пуска электропривода надо отключить автомат напряжения цепи управления и вновь включить его. Так же работает защита, если прекращается принудительный обдув силовых тиристоров. В случае исчезновения фазы напряжения сети на время более 1,5 с электропривод выключается. Искусственный срыв инвертора создаётся, если выходное напряжение преобразователя превышает уровень 1,2 Uн. Блок питания содержит трансформатор, выпрямительные мосты, емкостные фильтры, предохранители. СУВ питается от стабилизированных источников, при повышении нагрузки ограничивается ток стабилизатора.
Система управления инвертором рис.3.34 состоит из ЗГ (размещенного в блоке регулирования), блока управления инвертором и выходных усилителей(установленных в силовых блоках). ЗГ работает на основе перезарядки колебательного контура. При равенстве сигнала задания нулю начальная частота ЗГ 1/1,5 Гц. Задающий генератор управляется от блока регулирования. Выход ЗГ соединён с распределителем импульсов и формирователем длительности импульсов (ФИ). Распределитель импульсов кольцевого типа является реверсивным счетчиком, который выдает шестифазную последовательность импульсов РИ управляется от САР (блока регулирования) через ячейку реверса (ЯР) ЗГ подает сигнал разрешения реверса после снижения его частоты до начальной.
Формирователь импульсов образует три системы импульсов. Первая – шестифазная система широких импульсов служит для управления основными тиристорами (ФИО), их длительность равна 180 эл. градусов минус интервал коммутационной паузы. Вторая – система из двух последовательностей узких импульсов, предназначенная для управления подзарядными тиристорами (ФПИ). Эти импульсы имеют частоту в 3 раза больше выходной. Последовательности импульсов сдвинуты между собой на половину своего периода. Третья шестифазная система узких импульсов – для управления коммутирующими тиристорами (ФКИ), их длительность равна сумме интервала коммутационной паузы и длительность импульса подзарядного тиристора. Передний фронт импульса подзарядного тиристора совпадает с началом основного. Импульс коммутирующего тиристора длится все время коммутационной паузы и последующего интервала импульса подзарядного тиристора. Импульсы основных тиристоров через выходные усилители основных импульсов (ВУОИ), а импульсы коммутирующих и подзарядных тиристоров через выходные усилители узких импульсов (ВУКИ и ВУПИ) поступают в силовую схему. Выходные усилители содержат разделительные трансформаторы.