
- •Электротехника
- •1.Электрические цепи постоянного тока
- •1.1. Основные понятия и обозначения электрических цепей
- •1.2. Характеристики и схемы замещения источников и приемников электрической энергии
- •Источники в электрических цепях.
- •Источник тока.
- •1.3. Основные законы электрических цепей.
- •Законы Кирхгофа
- •Метод узловых потенциалов.
- •Метод эквивалентного генератора.
- •Метод эквивалентного источника тока
- •Метод наложения
- •1.4. Передача электрической энергии от источника к потребителю. Мощность в цепях постоянного тока.
- •1.5. Нелинейные электрические цепи постоянного тока
- •1.6. Контрольные работы по цепям постоянного тока
- •Пример использования маткада при решении задач по цепям постоянного тока
- •3. Правила по охране труда
- •Задания
- •2.Электрические цепи однофазного синусоидального переменного тока
- •2.1. Получение э.Д.С., синусоидально изменяющееся во времени
- •Пример использования маткада при решении задач по однофазным цепям переменного тока
- •Однофазные цепи переменного тока
- •2.10Лабораторная работа по однофазным синусоидальным цепям переменного тока. (Лабораторная работа n3) Исследование линейных электрических цепей переменного тока
- •Задания
- •Собрать электрическую схему (рис. 3.1). Предъявить схему для проверки преподавателю.
- •По результатам измерений п. 1.5 и 1.7 вычислить и записать величины, указанные в правой части табл. 3.1.
- •По данным табл. 3.1 построить графики зависимостей:
- •Сделать вывод о том, как зависят z, I, cosφ, р и s от емкостного сопротивления конденсатора Хс.
- •Собрать электрическую схему (рис. 3.2). Предъявить схему для проверки преподавателю.
- •Перед включением электрической цепи убедиться, что ручка лatPa находится на нуле. Включить s45 и s12, с помощью пере-
- •Измерительные приборы электромагнитной и электродинамических систем
- •3. Периодические несинусоидальные токи и напряжения в электрических цепях
- •3.1.Характеристики несинусоидальных величин, разложение в ряд Фурье.
- •3.4.Активная,реактивная,полная мощность при несинусоидальных токах и напряжениях.
- •4.2.Соединение приемников «звездой»
- •4.3.Соединение нагрузки «треугольником»
- •4.4. Варианты контрольных работ
- •4.5. Лабораторная работа по трехфазным цепям переменного тока
- •2.4. Правила по технике безопасности
- •2.6. Порядок выполнения работы
- •2.6.1. Исследование трехфазного источника
- •2.6.2. Исследование трехфазной цепи при соединении приемников в звезду с нейтральным проводом
- •2.6.2. Исследование трехфазной цепи при соединении приемников в звезду без нейтрального провода
- •2.6.3. Исследование трехфазной цепи при соединении приемников в треугольник
- •5. Переходные процессы в линейных электрических цепях
- •5.1.Опредедление переходного процесса, законы коммутации.
- •5.2.Переходный процесс в цепях r,l
- •5.3. Переходные процессы в цепи r,c.
- •5.4..Переходный процесс в цепи r,c,l.
- •1.1.Основные параметры и характеристики выпрямителей
- •Основные характеристики различных схем выпрямления.
- •1.2. Однофазный однополупериодный выпрямитель
- •1.4. Однофазный двухполупериодный мостовой выпрямитель
- •1.4. Однофазный двухполупериодный мостовой выпрямитель.
- •1.5. Трехфазный двухполупериодный выпрямитель со средней точкой трансформатора
- •1.6. Трехфазный двухполупериодный мостовой выпрямитель
- •1.7. Фильтры
- •1.8. Стабилизаторы напряжения
- •1.9. Примеры расчетов выпрямителей на полупроводниковых диодах
- •Решение:
- •Решение:
- •1.Выбираем параметры указанных диодов и записываем их в таблицу
- •1.10 . Контрольная работа по выпрямителям на полупроводниковых диодах
- •2.Управляемые выпрямители
- •2.1. Тиристоры их параметры и характеристики
- •2.2. Однофазный однополупериодный тиристорный управляемый выпрямитель
- •2.3. Однофазный двухполупериодный тиристорный управляемый выпрямитель со средней точкой трансформатора
- •2.4. . Однофазный двухполупериодный мостовой тиристорный управляемый выпрямитель
- •2.4. . Однофазный двухполупериодный мостовой тиристорный управляемый выпрямитель
- •2.5. Трехфазный двухполупериодный тиристорный управляемый выпрямитель со средней точкой трансформатора
- •2.7. Тиристорный ключ постоянного тока
- •3.. Преобразователи постоянного напряжения в переменное
- •3.1. Автономный инвертор
- •2.7.Лабораторная работа по выпрямителям
- •Исследование двухполупериодного мостового выпрямителя без фильтра
- •Исследование двухполупериодного мостового выпрямителя с емкостным фильтром
- •Исследование двух полупериодного мостового выпрямителя
- •Исследование управляемого выпрямителя
- •4.Транзисторные усилители
- •4.1. Биполярные транзисторы
- •4.2.Полевые транзисторы
- •4.3. Основные схемы усилителей
- •Включение транзистора по схеме с оэ
- •4.4. Обратные связи в усилителях
- •4.5. Генераторы синусоидальных колебаний
- •4.6. Примеры расчета схем на биполярных транзисторах
- •4.7. Контрольная работа по усилителям на биполярных транзисторах
- •4 . .Лабораторная работа по транзисторным усилителям
- •Транзисторы, основные характеристики транзисторов
- •5.Операционные усилители постоянного тока
- •5.1. Основные параметры и характеристики усилителей постоянного тока (оу)
- •5.2. Основные схемы усилителей постоянного тока
- •Электродвигатели
- •Электродвигатели постоянного тока (дпт)
- •Конструкция и принцип работы дпт
- •Электродвигатели постоянного тока
- •2. Электродвигатели переменного тока асинхронные (ад)
- •Эдс статора.
- •Эдс ротора.
- •Механическая характеристика асинхронного двигателя
- •Электромагнитный момент асинхронной машины
- •Регулирование частоты вращения асинхронных двигателей
- •Изменение частоты источника питания
- •3. Электродвигатели переменного тока синхронные (сд)
- •4. Выбор и расчет мощности электродвигателей
- •Р 1 4 t м,р 4 3 2 ежимы работы электродвигателя
- •Расчет мощности
- •5.5. Контрольные работы по электродвигателям ад и дпт Контрольная работа по электродвигателям ад
- •Контрольная работа по электродвигателям дпт
- •5. Основы электропривода
- •5.1.Применение обратных связей для управления электродвигателями
- •Общий подход к синтезу электроприводов с обратной связью
- •Основные схемы регуляторов
- •Пропорционально – дифференциальный регулятор (пд - регулятор)
- •Пропорционально – интегрально – дифференциальный регулятор (пид – регулятор) рис. 1.9
- •5.4. Синтез электроприводов с последовательными корректирующими устройствами, регуляторами
- •5.5. Синтез электроприводов с параллельными корректирующими устройствами, регуляторами
- •5.6. Синтез электроприводов с последовательными и параллельными корректирующими устройствами, регуляторами]
- •5.7. Принципы построения систем подчиненного регулирования в электроприводах
- •5.8. . Основные технические характеристики электроприводов
- •Динамические характеристики
- •5.9. Электропривода с двигателями постоянного тока, цифровые виртуальные модели. Математические модели двигателя постоянного тока с независимым возбуждением
- •Математическая модель двигателя постоянного тока с последовательным возбуждением.
- •Электромагнитные процессы в системе шип-дпт
- •Электропривод постоянного тока на базе широтно-импульсного преобразователя
- •Электропривод эт3и
- •Электропривод эт6
- •Электропривод серии эту3601
- •Электропривод серии эшир-1
- •Электроприводы главного движения эт3, этзд, этрп
- •Электроприводы серии этрп
- •5.10. Электропривода с двигателями переменного тока,
- •Преобразователи координат и фаз
- •Асинхронная машина с короткозамкнутым ротором.
- •Анализ акз во вращающейся системе координат.
- •Разомкнутая система асинхронный короткозамкнутый двигатель – автономный инвертор с синусоидальной широтно-импульсной модуляцией (акз – аин с шим)
- •Классификация законов управления асинхронным электроприводом
- •Асинхронные электроприводы с векторным управлением Построение частотно-токового асинхронного электропривода с векторным управлением
- •Электромагнитные процессы в замкнутом асинхронном электроприводе
- •Вентильная машина
- •Математическое описание вентильной машины
- •Модель вентильной машины в неподвижной системе координат
- •Модель вентильной машины во вращающейся системе координат
- •Модель вентильной машины во вращающейся системе координат с учетом запаздывания в канале вт-дм-ф.
- •Электропривод с вентильным двигателем
- •Преобразователь частоты серии тпч
- •Преобразователь частоты серии птчкш
- •Преобразователи серии пч-4-200 и пч-3,5-3200. [3]
- •Электроприводы переменного тока серии экт (эктр)
- •Следящий электропривод подачи с асинхронным двигателем переменного тока . Размер 2м-5-2.
Электромагнитные процессы в замкнутом асинхронном электроприводе
Электромагнитные процессы в замкнутом асинхронном электроприводе, определяющее его энергетические характеристики, исследуются в установившемся режиме и без учета высокочастотных пульсаций тока , вызванных импульсным характером напряжения на выходе инвертора (анализ по гладкой составляющей). В этом случае, электромагнитные переменные зависят от закона управления и не зависят от метода реализации этого закона (скалярного и векторного). Рассмотрим расчет этих характеристик для наиболее распространенного закона с поддержанием постоянного потокосцепления ротора. Анализ удобнее осуществлять во вращающейся системе координат, поскольку все электромагнитные переменные состояния, а их произвольные равны нулю.
Математическое описание АКЗ в установившемся режиме находится из уравнения (3.14) при условиях:
(3.32)
Напомним, что все переменные являются относительными. Из двух последний уравнений находятся относительные значения токов в осях x,y:
(3.33)
Проекции напряжения на статоре находятся из первых уравнений системы (3.32):
(3.34)
Алгоритм расчета электромагнитных характеристик включает такую последовательность:
Задается относительная частота
Задается абсолютное скольжение в диапазоне
Для каждого значения абсолютного скольжения рассчитываются токи и напряжения по формулам, приведенным выше.
Вентильная машина
Основной отличительной особенностью вентильных машин является то, что поле ротора в них неподвижно относительно ротора вращается синхронно с ним. В синхронных электромагнитных и магнитоэлектрических машинах это собственное поле, а в синхронных реактивных – это поле, которое пронизывает.
При проектировании электропривода выделение видов синхронных машин связанно уже не столько с физическими и конструкционными особенностями применениями, со способами ее управления и способами построения систем управления.
Машины с электромагнитным возбуждением и явно выраженными полюсами нашли широкое распространение в гидрогенераторах. Кроме того, они широко используются в судовых и автомобильных генераторах. Машины с электромагнитным возбуждением с неявно выраженными полюсами используется в турбогенераторах.
Эти типы машин тесно связаны с энергетикой и практически не используется в электроприводе. Теория этих машин подробно изложена в классических курсах по электрическим машинам. Поэтому в дальнейшем изложении они не рассматриваются. Однако следует подчеркнуть, что все исследования электроприводов (разомкнутых и замкнутых) с магнитоэлектрическими машинами автоматически можно распространить на машины электромагнитные.
В машинах магнитоэлектрических деление касается скорей способа управления, нежели принципа работы.
Обмотки статора машины могут быть запитаны синусоидальным напряжением (током), квазисинусоидальным напряжением (током) (ШИМ по синусоидальному закону) и импульсным напряжением (током).
В зависимости от этого различаются:
Шаговые двигатели. В них обмотки статора запитываются импульсным напряжением (током). От каждого импульса ротор двигателя совершает шаг – поворот на определенный угол. Шаговый двигатель – это уже синхронный двигатель вместе с полупроводниковым преобразователем. Его характеристики зависят от способа построения и управления этого преобразователя. Шаговые двигатели нашли широкое распространение в системах электроавтоматики, управляемых по радиоканалу, а так же в цифровых системах управления.
Бесконтактные машины постоянного тока (БМПТ) и вентильные машины (ВМ) – это синхронный двигатель в замкнутой системе (3.34), реализованной с использованием датчика положения ротора (ДПР), преобразователя координат (ПК) и силового полупроводникового преобразователя (СПП).
Разница между БМПТ и ВМ заключается только в способе формирования напряжения на выходе силового полупроводникового преобразователя рис.3.23.
Рис. 3.23. Функциональная схема БМПТ и ВМ
В первом случае формируется импульсное напряжение на обмотках машины. Во втором случае на выходе СПП формируется синусоидальное или квазисинусоидальное напряжение (ток).
Следует заметить, что БМПТ отличаются от шаговых тем, что включены в замкнутые систему формирования напряжения. В них напряжение формируется в зависимости от полярности ротора, и это является их принципиальным отличием от в которых положение ротора зависит от числа управляющих импульсов.
Из всех рассмотренных типов синхронных машин наиболее перспективными считаются вентильные машины.
Принцип управления вентильной машиной рис. 3.23. Датчик положения ротора (ДПР), преобразователь координатной и силовой полупроводниковый преобразователь (СПП).
Ось магнитного поля ротора в синхронной машине принято обозначать d, а перпендикулярную ось – буквой q (рис.3.2). При анализе машины ось d считается вещественной осью, а ось q – мнимой.