
- •Электротехника
- •1.Электрические цепи постоянного тока
- •1.1. Основные понятия и обозначения электрических цепей
- •1.2. Характеристики и схемы замещения источников и приемников электрической энергии
- •Источники в электрических цепях.
- •Источник тока.
- •1.3. Основные законы электрических цепей.
- •Законы Кирхгофа
- •Метод узловых потенциалов.
- •Метод эквивалентного генератора.
- •Метод эквивалентного источника тока
- •Метод наложения
- •1.4. Передача электрической энергии от источника к потребителю. Мощность в цепях постоянного тока.
- •1.5. Нелинейные электрические цепи постоянного тока
- •1.6. Контрольные работы по цепям постоянного тока
- •Пример использования маткада при решении задач по цепям постоянного тока
- •3. Правила по охране труда
- •Задания
- •2.Электрические цепи однофазного синусоидального переменного тока
- •2.1. Получение э.Д.С., синусоидально изменяющееся во времени
- •Пример использования маткада при решении задач по однофазным цепям переменного тока
- •Однофазные цепи переменного тока
- •2.10Лабораторная работа по однофазным синусоидальным цепям переменного тока. (Лабораторная работа n3) Исследование линейных электрических цепей переменного тока
- •Задания
- •Собрать электрическую схему (рис. 3.1). Предъявить схему для проверки преподавателю.
- •По результатам измерений п. 1.5 и 1.7 вычислить и записать величины, указанные в правой части табл. 3.1.
- •По данным табл. 3.1 построить графики зависимостей:
- •Сделать вывод о том, как зависят z, I, cosφ, р и s от емкостного сопротивления конденсатора Хс.
- •Собрать электрическую схему (рис. 3.2). Предъявить схему для проверки преподавателю.
- •Перед включением электрической цепи убедиться, что ручка лatPa находится на нуле. Включить s45 и s12, с помощью пере-
- •Измерительные приборы электромагнитной и электродинамических систем
- •3. Периодические несинусоидальные токи и напряжения в электрических цепях
- •3.1.Характеристики несинусоидальных величин, разложение в ряд Фурье.
- •3.4.Активная,реактивная,полная мощность при несинусоидальных токах и напряжениях.
- •4.2.Соединение приемников «звездой»
- •4.3.Соединение нагрузки «треугольником»
- •4.4. Варианты контрольных работ
- •4.5. Лабораторная работа по трехфазным цепям переменного тока
- •2.4. Правила по технике безопасности
- •2.6. Порядок выполнения работы
- •2.6.1. Исследование трехфазного источника
- •2.6.2. Исследование трехфазной цепи при соединении приемников в звезду с нейтральным проводом
- •2.6.2. Исследование трехфазной цепи при соединении приемников в звезду без нейтрального провода
- •2.6.3. Исследование трехфазной цепи при соединении приемников в треугольник
- •5. Переходные процессы в линейных электрических цепях
- •5.1.Опредедление переходного процесса, законы коммутации.
- •5.2.Переходный процесс в цепях r,l
- •5.3. Переходные процессы в цепи r,c.
- •5.4..Переходный процесс в цепи r,c,l.
- •1.1.Основные параметры и характеристики выпрямителей
- •Основные характеристики различных схем выпрямления.
- •1.2. Однофазный однополупериодный выпрямитель
- •1.4. Однофазный двухполупериодный мостовой выпрямитель
- •1.4. Однофазный двухполупериодный мостовой выпрямитель.
- •1.5. Трехфазный двухполупериодный выпрямитель со средней точкой трансформатора
- •1.6. Трехфазный двухполупериодный мостовой выпрямитель
- •1.7. Фильтры
- •1.8. Стабилизаторы напряжения
- •1.9. Примеры расчетов выпрямителей на полупроводниковых диодах
- •Решение:
- •Решение:
- •1.Выбираем параметры указанных диодов и записываем их в таблицу
- •1.10 . Контрольная работа по выпрямителям на полупроводниковых диодах
- •2.Управляемые выпрямители
- •2.1. Тиристоры их параметры и характеристики
- •2.2. Однофазный однополупериодный тиристорный управляемый выпрямитель
- •2.3. Однофазный двухполупериодный тиристорный управляемый выпрямитель со средней точкой трансформатора
- •2.4. . Однофазный двухполупериодный мостовой тиристорный управляемый выпрямитель
- •2.4. . Однофазный двухполупериодный мостовой тиристорный управляемый выпрямитель
- •2.5. Трехфазный двухполупериодный тиристорный управляемый выпрямитель со средней точкой трансформатора
- •2.7. Тиристорный ключ постоянного тока
- •3.. Преобразователи постоянного напряжения в переменное
- •3.1. Автономный инвертор
- •2.7.Лабораторная работа по выпрямителям
- •Исследование двухполупериодного мостового выпрямителя без фильтра
- •Исследование двухполупериодного мостового выпрямителя с емкостным фильтром
- •Исследование двух полупериодного мостового выпрямителя
- •Исследование управляемого выпрямителя
- •4.Транзисторные усилители
- •4.1. Биполярные транзисторы
- •4.2.Полевые транзисторы
- •4.3. Основные схемы усилителей
- •Включение транзистора по схеме с оэ
- •4.4. Обратные связи в усилителях
- •4.5. Генераторы синусоидальных колебаний
- •4.6. Примеры расчета схем на биполярных транзисторах
- •4.7. Контрольная работа по усилителям на биполярных транзисторах
- •4 . .Лабораторная работа по транзисторным усилителям
- •Транзисторы, основные характеристики транзисторов
- •5.Операционные усилители постоянного тока
- •5.1. Основные параметры и характеристики усилителей постоянного тока (оу)
- •5.2. Основные схемы усилителей постоянного тока
- •Электродвигатели
- •Электродвигатели постоянного тока (дпт)
- •Конструкция и принцип работы дпт
- •Электродвигатели постоянного тока
- •2. Электродвигатели переменного тока асинхронные (ад)
- •Эдс статора.
- •Эдс ротора.
- •Механическая характеристика асинхронного двигателя
- •Электромагнитный момент асинхронной машины
- •Регулирование частоты вращения асинхронных двигателей
- •Изменение частоты источника питания
- •3. Электродвигатели переменного тока синхронные (сд)
- •4. Выбор и расчет мощности электродвигателей
- •Р 1 4 t м,р 4 3 2 ежимы работы электродвигателя
- •Расчет мощности
- •5.5. Контрольные работы по электродвигателям ад и дпт Контрольная работа по электродвигателям ад
- •Контрольная работа по электродвигателям дпт
- •5. Основы электропривода
- •5.1.Применение обратных связей для управления электродвигателями
- •Общий подход к синтезу электроприводов с обратной связью
- •Основные схемы регуляторов
- •Пропорционально – дифференциальный регулятор (пд - регулятор)
- •Пропорционально – интегрально – дифференциальный регулятор (пид – регулятор) рис. 1.9
- •5.4. Синтез электроприводов с последовательными корректирующими устройствами, регуляторами
- •5.5. Синтез электроприводов с параллельными корректирующими устройствами, регуляторами
- •5.6. Синтез электроприводов с последовательными и параллельными корректирующими устройствами, регуляторами]
- •5.7. Принципы построения систем подчиненного регулирования в электроприводах
- •5.8. . Основные технические характеристики электроприводов
- •Динамические характеристики
- •5.9. Электропривода с двигателями постоянного тока, цифровые виртуальные модели. Математические модели двигателя постоянного тока с независимым возбуждением
- •Математическая модель двигателя постоянного тока с последовательным возбуждением.
- •Электромагнитные процессы в системе шип-дпт
- •Электропривод постоянного тока на базе широтно-импульсного преобразователя
- •Электропривод эт3и
- •Электропривод эт6
- •Электропривод серии эту3601
- •Электропривод серии эшир-1
- •Электроприводы главного движения эт3, этзд, этрп
- •Электроприводы серии этрп
- •5.10. Электропривода с двигателями переменного тока,
- •Преобразователи координат и фаз
- •Асинхронная машина с короткозамкнутым ротором.
- •Анализ акз во вращающейся системе координат.
- •Разомкнутая система асинхронный короткозамкнутый двигатель – автономный инвертор с синусоидальной широтно-импульсной модуляцией (акз – аин с шим)
- •Классификация законов управления асинхронным электроприводом
- •Асинхронные электроприводы с векторным управлением Построение частотно-токового асинхронного электропривода с векторным управлением
- •Электромагнитные процессы в замкнутом асинхронном электроприводе
- •Вентильная машина
- •Математическое описание вентильной машины
- •Модель вентильной машины в неподвижной системе координат
- •Модель вентильной машины во вращающейся системе координат
- •Модель вентильной машины во вращающейся системе координат с учетом запаздывания в канале вт-дм-ф.
- •Электропривод с вентильным двигателем
- •Преобразователь частоты серии тпч
- •Преобразователь частоты серии птчкш
- •Преобразователи серии пч-4-200 и пч-3,5-3200. [3]
- •Электроприводы переменного тока серии экт (эктр)
- •Следящий электропривод подачи с асинхронным двигателем переменного тока . Размер 2м-5-2.
5.9. Электропривода с двигателями постоянного тока, цифровые виртуальные модели. Математические модели двигателя постоянного тока с независимым возбуждением
На рис. 2.1. показан двигатель постоянного тока с независимым возбуждением [1]. Уравнения, которые описывают электромагнитные и электромеханические процессы, имеют вид:
Рис. 2.1. ДПТ с независимым возбуждением.
В уравнениях ( 2.1.) индексом «B» отмечены переменные и параметры, относящиеся к обмотке возбуждения, индексом «Я» - переменные и параметры, относящиеся к якорю, коэффициенты Кф,Км,Кэ являются конструктивными постоянными.
Приведем уравнения (2.1.) к безразмерному виду, приняв в качестве базовых единиц номинальные значения переменных двигателя.
(2.2)
где:
-
относительные переменные состояния
двигателя,
-
параметры двигателя.
Уравнения (2.2.) могут быть представлены в операторной форме:
(2.3)
Этим уравнениям соответствует виртуальная модель, представленная на рис. 2.2 .
а)
Рис. 2.2 Цифровая виртуальная модель ДПТ. [1] dpt1..
Модель имеет два входа управления: (UЯ) – управление по цепи якоря, (UВ) - управление по цепи возбуждения и один вход по возмущению (MH) – возмущение по ремонту нагрузки. Блок (Transfer Fen) моделирует цепь возбуждения (постоянная времени цепи Тв = 0,5 с). Блок (Transfer Fen1) моделирует цепь якоря (постоянная времени Т=0, 02 с). Блоки (Produkt, Produkt1 ) реализуют умножение в соответствии с уравнением 2 и3 системы (4.3.). Блоки (Sum1, Gain, Integrator) реализуют третье уравнение системы (2.3.).
В двигателе с независимым возбуждением поток можно считать постоянным. В этом случае модель двигателя упрощается, такая модель представлена на рис. 2.3.
Вдальнейшем эта модель будет использована для синтеза электропривода при управлении по цепи якоря.
Рис. 2.3.Цифровая виртуальная модель ДПТ при постоянном потоке возбуждения [1].
В приводах постоянного тока иногда используется так называемое двухзонное регулирование. В этом случае двигатель управляется и по цепи якоря, и по цепи возбуждения. Обычно эти управления разнесены. По цепи якоря при постоянном потоке возбуждения управление осуществляется при значительных моментах на валу, а управление по цепи возбуждения – при малых моментах.
Рис.2.3. Цифровая виртуальная модель для получения механических характеристик [1] dpt5..
Математическая модель двигателя постоянного тока с параллельным возбуждением.
В двигателе постоянного тока с параллельным возбуждением [1] обмотка возбуждения включена параллельна якорю рис. 2.4. В этом случае uВ=uR=u, и из (2.3.) имеем:
(2.4)
Рис. 2.4. ДПТ с параллельным возбуждением.
Модель двигателя, построенная по этим уравнениям показана на рис. 2.5.
Рис. 2.5. Цифровая виртуальная модель с параллельным возбуждением [1] dpt3..
Исследование механических характеристик двигателя с параллельным возбуждением можно проводить на модели, показанной на рис. 2.6.
Рис.
2.6 Цифровая виртуальная модель ДПТ с
параллельным возбуждением [1] dpt3.a..
Результаты моделирования показывают, что двигатель развивает меньший пусковой момент и имеет большую скорость холостого хода по сравнению с двигателем с независимым возбуждением.