Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабор.практикум по метрологии.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.71 Mб
Скачать

Значения критерия Шарлье

n

5

10

20

30

40

50

100

1,3

1,65

1,96

2,13

2,24

2,32

2,58

Вариационный критерий Диксона Кд удобный и достаточно мощный (с малыми вероятностями ошибок). Применяется при числе наблюдений n < 30. При его применении полученные результаты наблюдений записывают в вариационный возрастающий ряд . Критерий Диксона определяется как Критическая область для этого критерия . Значения zq приведены в табл.2.4.

Пример 2. Было проведено пять измерений напряжения в электросети. Получены следующие результаты: 127,1; 127,2; 126,9; 127,6; 127,2. Результат 127,6В существенно (на первый взгляд) отличается от остальных. Проверить, не является ли он промахом.

Решение. Составим вариационный ряд из результатов измерений напряжения в электросети:

126,9; 127,1; 127,2; 127,2; 127,6. Для крайнего члена этого ряда 127,6 критерий Диксона

Кд = (127,6 – 127,2) / (127,6 – 126,9) = 0,4 / 0,7 = 0,57.

Таблица 2.4

Значения критерия Диксона

n

при q, равном

0,10

0,05

0,02

0,01

4

0,68

0,76

0,85

0,89

6

0,48

0,56

0,64

0,70

8

0,40

0,47

0,54

0,59

10

0,35

0,41

0,48

0,53

14

0,29

0,35

0,41

0,45

16

0,28

0,33

0,39

0,43

18

0,26

0,31

0,37

0,41

20

0,26

0,30

0,36

0,39

30

0,22

0,26

0,31

0,34

Как следует из табл.2.4, по этому критерию результат 127,6В может быть отброшен как промах лишь на уровне значимости q = 0,10.

Применение рассмотренных критериев требует осмотрительности и учета объективных условий измерения. Оператор должен исключить результат наблюдения с явной грубой погрешностью и выполнить новое измерение. Но нельзя просто отбрасывать более или менее сильно отличающиеся от других результаты наблюдений. В сомнительных случаях лучше сделать дополнительные измерения (не взамен сомнительных, а кроме них) и затем использовать рассмотренные критерии.

2.1.5. Суммирование погрешностей

Суммирование систематических погрешностей.

Неисключенная систематическая погрешность результата измерения включает составляющие, обусловленные методом, средствами измерений и другими источниками. Если случайные погрешности малы, то в качестве границ неисключенной систематической погрешности принимают пределы допускаемых основных и дополнительных погрешностей СИ.

При суммировании неисключенных систематических погрешностей их рассматривают как случайные величины с равномерным законом распределения.

1. Границы неисключенных систематических погрешностей результата измерения определяются по формуле

,

где - граница i – й неисключенной систематической погрешности;

- число неисключенных систематических погрешностей;

- коэффициент, зависящий от числа слагаемых , их соотношения и доверительной вероятности Р.

2. При Р < 0,99 коэффициент k мало зависит от и может быть представлен усредненными значениями, приведенными в табл. 2.5. Их погрешность не превышает 10%.

Таблица 2.5