
- •Объясните, что хар-ют эл-ты описат-ой стат.Ки: мода,
- •Опред-те связь м/у ско св и ско их среднеарифм-го зн-ия
- •Примеры распр-ий дсв и нсв, исп-ых в упр-нии кач-ом:
- •Распределение дсв
- •Распределение нсв
- •Нормальный (Гаусса) закон распределения
- •Экспоненциальное распределение
- •Закон равномерного распределения
- •5.12. Проан-те ф-ции плотности вер-ей норм-го распр-ия выб-го среднего при верности гипотезы Но и альтерн-ой гипотезы н1 (5). Оцените знач-ия рисков произв-ля и потр-ля (15)
- •5.14 Перечислите осн-ые разделы плана выб-го контроля кач-ва (15).Прив-те примеры идеал-ой и реал-ой оперативных характеристик (5) Основные разделы плана выборочного контроля кач-ва
- •Примеры идеальной и реальной оперативных хар-к
- •5.15 Поясните принцип реализации одноступенчатого, двухступенчатого и последовательного планов выборочного контроля кач-ва (15 баллов). Дайте их сравнительную хар-ку (5 баллов).
- •5.16 Назовите и обоснуйте усл-ия перехода с нормальной на усил-ую и ослабл-ую схемы выб-го контроля (10). Определите огр-ия на прим-ие сплошного и выборочного контроля (10).
- •Основные формы и принципы постр-ия контр-ых листков
- •5.19 Опишите назначение процедуры стратификации данных (5 баллов). Определите понятие «диаграмма рассеивания» и проанализируйте ее наиболее характерные виды (15 баллов ).
- •5.20 Определите роль и методы проведения корреляционного анализа в решении задач стат. Упр-ия кач-ом (15 баллов). Поясните разницу м/у функциональной и стат. Связью (5 баллов)
- •5.21 Опишите порядок постр-ия контр-ых карт по кол-му признаку (15 баллов). Дайте опр-ие понятию « контр-ые границы» в этом случае и опишите алгоритм их определения (5).
- •5.22 Проведите анализ возможных вариантов поведения данных на х - r картах (15 баллов) и сделайте выводы по оценке управляемости и воспроизводимости процессов (5 баллов)
- •5.23 Опишите порядок постр-ия контр-ых карт по альтернативному признаку (15 баллов). Дайте опр-ие понятию « контр-ые границы» в этом случае и опишите алгоритм их определения (5).
- •5.24 Проанализируйте возможных вариантов поведения технологического процесса на р - карте (15 баллов) и дайте их интерпретацию с точки зрения стат. Упр-ия кач-ом (5 баллов)
- •Поведение технологического процесса на р - карте и их интерпретация с точки зрения стат. Упр-ия кач-ом
- •5.25 Опред-те возм-ти оценивания технологического процесса на управляемость и воспроизводимость (5). Дайте опр-ие понятию «индекс пригодности» технол-го процесса (15)
- •«Индекс пригодности» технологического процесса
- •5.26 Опишите исп-ие стат. Методов в послед-ти этапов разверт-ия функции кач-ва (qfd) (10 баллов) и дайте их краткую хар-ку на примере решения практической задачи (10 баллов).
- •Определите элементы описательной стат.Ки в ситуации
5.20 Определите роль и методы проведения корреляционного анализа в решении задач стат. Упр-ия кач-ом (15 баллов). Поясните разницу м/у функциональной и стат. Связью (5 баллов)
Одной из важнейших задач статистики явл-ся выявление и измерение взаимосвязей, установленных на основе количественного анализа.
Выделяют 2 вида взаимосвязи: функциональную и корреляционную (статистическую).
При функциональной связи каждому значению одной величины (аргумента) соответствует одно или несколько значений другой величины. y=f(x)
Функциональная связт находит применение в точных науках. Связь, при которой каждому значению аргумента соответствует одно или несколько значений функций и м/у ними нельзя установить строгой функциональной зависимости наз-ся корреляционной. Корреляционная зависимость проявляется в средних величинах и числовое соотношение м/у ними проявляется только в виде тенденции.
Различают положительную и отрицательную корреляционные связи. В первом случае рост ср. знач-я аргументов сопровождается ростом ф-ций, а во втором-уменьшением. Считается, что если такие зависимости происходят без исключений, то связь сильная. А если есть исключения, то слабая.
Наиболее точное оценивание хар-ра взаимосвязи выполняется с помощью коэфф-та корреляции.
Ккор двух переменных выражается с помощью соотношения:
где n-число пар данных.
Этот коэфф-т изменяется в приделах от -1 до +1. Для оценки степени корр. связи в статистике применяют шкалу Шеддона:
Если
коэфф-т
-
связь отсутствует
-
связь слабая
-
связь сильная
-
очень сильная
Вычисление коэфф-та корр. сопряжено со значит. трудностями и обладают малой наглядностью. поэтому на практике применяют упрощенные методы определения корр. связи:
1. Метод параллельных рядов
Полученные парные данные располагают в таблице в виде двух параллельных рядов. Причем данные аргумента ранжируют. Затем сравнивают эти ряды м/у собой и выявляют тенденции. Этот метод наиб. прост, но позволяет определить только направление взаимосвязи или её отсутствие.
2. Балансовый метод
Данные м/у анализируемыми показателями располагаются в таблице так, чтобы итоги по отдельным частям были равны. Затем анализируют эти части. Этот метод исп-ют при анализе бюджетов.
3. Диаграммы разброса (рассеяния)
Применяются на производстве и на различных этапах ЖЦП для выявления зависимости м/у показателями кач-ва и основными факторами производства. Этот метод позволяет определить вид и степень связей пар переменных.
5.21 Опишите порядок постр-ия контр-ых карт по кол-му признаку (15 баллов). Дайте опр-ие понятию « контр-ые границы» в этом случае и опишите алгоритм их определения (5).
Порядок построения контр-ных карт по кол-му признаку:
При построение контрольных карт по колич. признаку необх-мо:
- устранить все возможные мешающие факторы, которые не присущи процессу;
- определить процесс (его входы и выходы);
- опр-ть характеристики, которые наиболее полно отражают процесс и кот. будут контролироваться (диагр. Исикавы –Парето – АВСанализ);
- определиться с требованиями к средствам измерений;
- собираются данные по выбранной характеристике процесса (с помощью контрольных листков);
- выбирается тип контрольной карты по колич. признаку. Одним из наиб. простых и удобных явл-ся карта X средних и карта размахов, т.е. исп-ся пара карт, рассматриваемых совместно, из которых карта X-средних характеризует изменчивость ср. знач. параметра процесса, а вторая, карта размахов, характ-ет степень разбросов.
- опред-ся объем выборок для колич-х данных (5-8);
- опред-ся число выборок достаточных для анализа, обычно 15-20, короткая длина не позволяет выявить тенденции в процессе (тренды), большие длины – инф-ция запаздывает;
- опред-ся частота (интервал) взятия выборок. Как правило это связано с особенностями процесса, с тем, чтобы могли быть зафиксированы возможные вариации этого процесса;
-
строится таблица, на которой по горизонт-ой
оси откладываются моменты взятия
выборок, для каждой выборки вычисляется
,
на карте X-средних
откладываются координаты точек средних
выборочных значений и соединяются
прямыми;
- для каждой выборки вычисляется величина размаха R=Xmax-Xmin;
- наносятся координаты размахов на R карту и соединяются прямыми;
-проводится расчет контрольных и предупреждающих границ
«Контрольные границы» и алгоритм их определения:
Контрольные границы – это хар-ки самого процесса. Они обозначаются как CL.
Контрольные границы указывают момент разладки процесса и ограничивают диапазон неизбежного разброса значений выборочной характеристики, т.е. разброса, обусловленного неустранимыми в наст. время обычными причинами, и позволяют судить , находится ли процесс в статистически управляемом состоянии или он подвержен влиянию особых причин.
Есть 2 границы: верхняя (UCL) и нижняя (LCL). Для вычисления контрольных границ используют коэффициенты D4 D3 A2 в зависимости от объема выборки. Контрольные границы для x и R карт вычисляются отдельно.
Для
R-карты:
и
,
где D4,
D3-const.,
определяемые из таблиц в зависимости
от объема выборки и
Для выборок, объем кот-ых меньше 7, нижняя граница не опред-ся.
.
Для
x-карты:
и
,где
,
а А2=0,58
Полученные контрольные границы наносятся на контрольные карты пунктирными линиями. Кроме них также наносятся на контрольные карты xср, xном, ВГД и НГД.
На этапе нач-го обследования эти границы рассм-ся как пробные, это дел-ся для оценки упр-ти процесса.