
- •Оглавление
- •1. Представление и измерение информации (свойства, характеристики, меры, кодирование).
- •2. Поколения эвм. Классы вычислительных машин. Многопроцессорные системы.
- •3. Общая структура и функции компьютера. Принципы построения эвм Дж. Фон Неймана. Состав материнской платы компьютера.
- •4) Состав, назначение, основные характеристики и системы команд центрального процессора. Система прерываний работы центрального процессора.
- •5. Внутренняя память компьютера (оперативная, кэш-память, постоянная память). Состав и назначение каждого вида памяти, основные характеристики
- •6. Средства перемещения данных внутри компьютера – шины и интерфейсы передачи данных. Виды и типы шин. Назначение каждого вида. Понятие порта.
- •7. Внешнее запоминающее устройство – накопитель на жестком магнитном диске. Понятие кластера. Логическая структура жесткого диска.
- •8. Файловые системы fat и ntfs. Структура тома в системе fat и в системе ntfs.
- •9. Классы программных продуктов. Системное программное обеспечение. Назначение. Основные компоненты
- •10. Классы программных продуктов. Пакеты прикладных программ. Инструментарий технологии программирования.
- •Проблемно-ориентированные пакеты
- •Системы автоматизации проектирования (сапр)
- •Пакеты общего назначения
- •Обеспечивают организационное управление деятельностью офиса. Включают:
- •Настольные издательские системы
- •Системы искусственного интеллекта
- •11. Понятие и составляющие элементы информационной системы (ис). Понятие и характеристики экономической информации. Структура экономической ис.
- •12. Основные функции информационных систем. Классификация информационных систем. Фактографические системы. Назначение.
- •13. Типы фактографических информационных систем (сод, ису, сппр). Назначение каждого типа.
- •14. Системы оперативной обработки транзакций (oltp). Назначение, характеристики и особенности систем. Арм как основное звено системы oltp.
- •15. Системы оперативной аналитической обработки данных (olap). Назначение. Особенности построения. Основные классы olap-продуктов.
- •16. Системы интеллектуального анализа данных (иад). Многомерные хранилища данных как основа для иад. Отличие хранилищ данных от витрин данных
- •17. Типы документальных информационных систем. Назначение каждого типа. Основные принципы поиска документа в информационно-справочной системе
- •18. Корпоративные информационные системы (кис). Основные составляющие кис. Функциональные и обеспечивающие подсистемы кис.
- •19. Принципы клиент-серверного взаимодействия программных компонентов корпоративных информационных систем. Модели клиент-серверной архитектуры
- •20. Методы управления предприятиями корпоративных информационных систем: mrp, mrpii, erp.
- •21. Технологии сетей информационного обмена: Ethernet, Token Ring, fddi. Модели сетевого взаимодействия открытых систем: osi, tcp/ip.
- •22. Понятие ит. Классификация ит. Обеспечивающие и функциональные ит. Стандарты пользовательского интерфейса
- •23. Основные элементы проектного плана в ms Project. Проектный треугольник. Типы задач и ресурсов проектного плана. Диаграмма Ганта.
- •24. Опорная дата проекта в ms Project. Суммарная задача проекта. Виды длительностей задач. Виды ограничений задач.
- •25. Типы связей задач в ms Project. Задержки и опережения. Календари ресурсов и задач. Назначенные типы задач.
- •26. Анализ длительности задач в ms Project. Анализ стоимости проектного плана. Анализ рисков.
- •27. Виды компьютерной графики. Цветовые модели.
- •28. Примитивы, сплайны, формы в 3d max. Привязки объектов
- •29. Способы выбора объектов и редактирование в 3d max. Модификаторы, лофтинг. Анимация.
- •30. Разработка ппп: этапы, стадии жизненного цикла.
- •31. Программы бухучета. Программы управления персоналом.
- •1С:Бухгалтерия
- •32. Системы электронного документооборота. Интегрированные решения многофункциональных систем.
- •1С:Предприятие.
- •33. Программы для страховой деятельности. Банковские программные системы.
- •34. Программы статистической обработки данных. Прогнозирование.
- •35. Методологии структурного анализа: idef0, idef3, dfd
- •36. Case-средства. BPwin, eRwin
- •37. Управленческая роль ит-менеджера на различных этапах жизненного цикла информационного продукта.
- •38. Соотношение понятий информационные технологии, информационные системы и управленческая структура объекта.
- •40. Стратегическое планирование развития информационных систем и технологий на объекте управления.
- •42. Организация управления на предприятии с использованием информационных систем и технологий
- •43. Оценка преимуществ и недостатков закупки готовых или разработки новых информационных систем и технологий. Особенности контрактов на закупку и разработку информационных систем и технологий.
- •44. Критерии оценки рынка информационных систем и технологий; критерии и технология их выбора.
- •45. Организация управления для различных этапов организации информационных систем и технологий: разработка, внедрение и эксплуатация; состав и содержание работ.
- •46. Приемы менеджмента для каждого этапа на фирмах-производителях и на фирмах-потребителях информационных систем.
- •47. Создание временных коллективов для внедрения информационных систем и технологий, и управление этими коллективами.
- •48. Мониторинг внедрения информационных систем и технологий; мониторинг их эксплуатации. Оценка и анализ их качества
- •49 Банковская система Российской Федерации. Структура. Основные изменения и прогнозы.
- •50. Капитал банка. Показатели, характеризующие состояние капитала банка.
- •2.Показатель общей достаточности капитала (пк2)
- •3.Показатель оценки качества капитала (пк3)
- •4.Обобщающий результат по группе показателей оценки капитала (ргк)
- •51. Мировые банковские системы. Основные параметры и отличия. Тнб.
- •52. Основные функции Банка России. Денежно-кредитная политика Банка России. Регулирование банковской деятельности и банковский надзор.
- •53.Кредитная политика кредитных организаций. Виды кредитов. Кредитный процесс.
- •По срокам погашения:
- •2. По способам погашения:
- •3. По виду платежа:
- •4. По методам кредитования.
- •5. По видам процентных ставок.
- •6. Целевое назначение кредита.
- •7. Категории потенциальных заемщиков.
- •54. Кредитные риски. Методики оценки кредитоспособности заемщика.
- •55.Основные формы отчетности коммерческого банка. Нормативы Банка России.
- •56.Активные операции. Инвестиционная деятельность коммерческих банков.
- •57.Расчеты платежными требованиями, платежными поручениями, расчеты по инкассо. Аккредитивная форма расчетов.
- •58.Доходы, расходы и прибыль коммерческих банков.
- •59. Пассивные операции коммерческих банков.
- •60. Управление клиентской базой (цели, задачи, подразделения банка, методы анализа, привлечение и удержание клиентов).
- •61. Организационная структура коммерческих банков. Порядок создания и ликвидации. Органы управления коммерческим банком.
- •62. Валютные операции коммерческих банков. Лизинговые операции коммерческих банков. Факторинговые операции коммерческих банков.
- •63. Приемы анализа деятельности коммерческого банка
- •64. Финансовые рынки. Первичность производственных процессов в образовании мировой финансовой системы. Составляющие Финансового рынка
- •Инструменты финансового рынка
- •65. Валютный рынок. Территориальные особенности валютных рынков. Forex.
- •66. Инвестиционный анализ
- •67.Фундаментальный анализ. Основные положения
- •69. Рынок ценных бумаг. Особенности Российского рынка ценных бумаг
- •70. Технический анализ. Основные положения
- •71. Профессиональные участники рцб.
- •72. Пифы и офбу. Сравнительный анализ
- •73. Нормативно правовая база рынка ценных бумаг.
- •74. Виды ценных бумаг
- •75. Фундаментальные показатели эмитентов
- •76. Портфельное инвестирование. Диверсификация
1. Представление и измерение информации (свойства, характеристики, меры, кодирование).
Информация — это осознанные сведения об окружающем мире, которые являются объектом хранения, преобразования, передачи и использования. Сведения — это знания, выраженные в сигналах, сообщениях, известиях, уведомлениях и т. д. Каждого человека в мире окружает море информации различных видов.
Свойства информации.
Качественные характеристики информации (основные её свойства):
- Объективность – не зависит от чего-либо мнения.
- Достоверность – отражает истинное положение дел.
- Полнота – достаточна для понимания задачи и принятия решения.
- Актуальность – важна и существенна для настоящего времени.
- Ценность (полезность, значимость) обеспечивает решение поставленной задачи, нужна для того чтобы принимать правильные решения.
- Понятность (ясность) - выражена на языке, доступном получателю.
Количественные характеристики информации
Существует несколько подходов к измерению информации:
содержательный (вероятностный)
алфавитный (объективный или технический).
В содержательном подходе возможна качественная оценка информации: новая, срочная, важная и т.д. Т.е., информативность сообщения характеризуется содержащейся в нем полезной информацией - той частью сообщения, которая снимает полностью или уменьшает неопределенность какой-либо ситуации.
Алфавитный подход основан на том, что всякое сообщение можно
закодировать с помощью конечной последовательности символов некоторого алфавита. Носителями информации являются любые последовательности символов, которые хранятся, передаются и обрабатываются с помощью компьютера. Т.е., информативность последовательности символов не зависит от содержания сообщения, а определяется минимально необходимым количеством символов для ее кодирования.
Единицы измерения информации:
1байт = 8 бит
1Кб (килобайт)=1024 байт
1Мб (мегабайт)=1024 Кб
1Гб (гигабайт)=1024 Мб
1Тб (терабайт)=1024 Гб
Кодирование информации:
Кодирование информации – это процесс формирования определенного представления информации. В более узком смысле под термином «кодирование» часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.
Современный компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. Все эти виды информации в компьютере представлены в двоичном коде.
Различают несколько видов кодирования информации.
Кодирование текстовой информации
(Для того чтобы закодировать один символ используют количество информации равное 1 байту, т.е. 8 бит.)
Распространённые кодировки: ASCII, KOI8-R, Windows-1251, ISO 8859-5, UTF-8, Unicode.
Кодирование графической информации
(от формата зависит качество и размер информации)
Распространённые форматы: jpg, png, gif.
Кодирование звука
(от формата зависит качество и размер информации)
Распространённые форматы: mp3, wav.
Кодирование видео
(от формата зависит качество и размер информации)
Распространённые форматы: avi, mpeg, mp4, mkv.
2. Поколения эвм. Классы вычислительных машин. Многопроцессорные системы.
Поколения:
Первое: 1940—1960. Вычислительный элемент — электронные лампы. Быстродействие — 10 - 20 тысяч операций в секунду. Большие ЭВМ. Программные средства были представлены машинным языком и языком ассемблера. (время становления архитектуры машин фон-неймановского)
Второе: 1960—1964. Вычислительный элемент — транзисторы. Быстродействие — до 1—2 миллионов операций в секунду. Мини-ЭВМ. Появилась основная память на магнитных сердечниках и внешняя память на магнитных барабанах. В это же время были разработаны алгоритмические языки высокого уровня, такие как Алгол, Кобол, Фортран, которые позволили составлять программы, не учитывая тип машины.
Третье: 1964—1971. Вычислительный элемент — сверхинтегральные схемы. Быстродействие — до 300 миллионов операций в секунду. Микро-ЭВМ, предназначенные для работы с одним пользователем. Первые операционные системы. Характеризуется тем, что вместо транзисторов стали использоваться интегральные схемы (ИС), а вместо памяти на магнитных сердечниках стала применяться полупроводниковая память.
Четвертое: 1971 - по настоящее время . Вычислительный элемент — микропроцессоры. Быстродействие — миллиарды операций в секунду. Персональные ЭВМ. Готовые прикладные программы, графический интерфейс, использование технологии мультимедиа. Глобальные компьютерные сети. Это машины, построенные на больших интегральных схемах (БИС)
Пятое: настоящее время — Нанотехнологии. Компьютеры на основе отдельных молекул и даже атомов. Нейросети, моделирующие структуру нервной системы человека. «Биологические компьютеры». Отличительными чертами ЭВМ этого поколения являются - новая технология производства: отказ от архитектуры фон Неймана, переход к новым архитектурам, новые способы ввода-вывода информации, искусственный интеллект, то есть автоматизация процессов решения задач, получения выводов, манипулирования знаниями.
Рассмотрим некоторые из наиболее популярных классификаций:
по принципу действия. Критерием деления вычислительных машин здесь является форма представления информации, с которой они работают.
- аналоговые (АВМ) - вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения).
- цифровые (ЦВМ) - вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, в цифровой форме.
- гибридные (ГВМ) - вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме
по назначению
- универсальные (общего назначения) - предназначены для решения самых различных технических задач: экономических, математических, информационных и других задач.
- проблемно-ориентированные - служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами.
- специализированные - используются для решения узкого круга задач или реализации строго определенной группы функций.
по размерам и функциональным возможностям
- сверхбольшие (суперЭВМ)
- большие
- малые
- мини
- сверхмалые (микроЭВМ)
Многопроцессорные системы.
В процессе развития суперкомпьютерных технологий идею повышения производительности вычислительной системы за счет увеличения числа процессоров использовали неоднократно. В настоящее время развитие суперкомпьютерных технологий идет по четырем основным направлениям: векторно-конвейерные суперкомпьютеры, SMP системы, MPP системы и кластерные системы.
Векторно-конвейерные суперкомпьютеры.
Первый векторно-конвейерный компьютер Cray-1 появился в 1976 году. Архитектура его оказалась настолько удачной, что он положил начало целому семейству компьютеров. Название этому семейству компьютеров дали два принципа, заложенные в архитектуре процессоров: конвейерная организация обработки потока команд и введение в систему команд набора векторных операций, которые позволяют оперировать с целыми массивами данных
Симметричные мультипроцессорные системы (SMP).
Характерной чертой многопроцессорных систем SMP архитектуры является то, что все процессоры имеют прямой и равноправный доступ к любой точке общей памяти. Первая возникшая проблема - большое число конфликтов при обращении к общей шине. Остроту этой проблемы удалось частично снять разделением памяти на блоки, подключение к которым с помощью коммутаторов позволило распараллелить обращения от различных процессоров.
Системы с массовым параллелизмом (МРР)
Компьютеры этого типа представляют собой многопроцессорные системы с распределенной памятью, в которых с помощью некоторой коммуникационной среды объединяются однородные вычислительные узлы. Каждый из узлов состоит из одного или нескольких процессоров, собственной оперативной памяти, коммуникационного оборудования, подсистемы ввода/вывода, т.е. обладает всем необходимым для независимого функционирования. Процессоры в таких системах имеют прямой доступ только к своей локальной памяти. Доступ к памяти других узлов реализуется обычно с помощью механизма передачи сообщений. Такая архитектура вычислительной системы устраняет проблему конфликтов при обращении к памяти. Это дает возможность практически неограниченного наращивания числа процессоров в системе, увеличивая тем самым ее производительность. Для MPP систем на первый план выходит проблема эффективности коммуникационной среды. Отметим, что при обмене данными между процессорами, не являющимися ближайшими соседями, происходит трансляция данных через промежуточные узлы. Очевидно, что в узлах должны быть предусмотрены какие-то аппаратные средства, которые освобождали бы центральный процессор от участия в трансляции данных.
Кластерные системы
Привлекательной чертой кластерных технологий является то, что они позволяют для достижения необходимой производительности объединять в единые вычислительные системы компьютеры самого разного типа, начиная от персональных компьютеров и заканчивая мощными суперкомпьютерами. Кластер - это связанный набор полноценных компьютеров, используемый в качестве единого вычислительного ресурса. Преимущества кластерной системы перед набором независимых компьютеров: разработано множество диспетчерских систем пакетной обработки заданий, позволяющих послать задание на обработку кластеру в целом, а не какому-то отдельному компьютеру. Эти диспетчерские системы автоматически распределяют задания по свободным вычислительным узлам или буферизуют их при отсутствии таковых. Появляется возможность совместного использования вычислительных ресурсов нескольких компьютеров для решения одной задачи.