
- •Предисловие
- •Глава IX написана совместно с в.И. Канторовичем, главы XIX-XXII - при участии к.П. Венгер. Главы х и XXIV написаны а.М. Кореневым.
- •Термодинамический принцип машинного охлаждения
- •Холодопроизводительность и холодильный коэффициент компрессионной машины.
- •Идеальный цикл паровой Компрессионной холодильной машины
- •Глава II
- •Требования к холодильным агентам
- •Вещества, применяемые в качестве холодильных агентов
- •Характеристика холодильных агентов
- •Характеристика холодильных агентов
- •Азеотропные смеси
- •Хранение и перевозка холодильных агентов
- •Глава III
- •Цикл с переохлаждением холодильного агента
- •Цикл при работе компрессора сухим ходом
- •Теоретический цикл паровой компрессионной холодильной машины
- •Построение теоретического цикла паровой компрессионной холодильной машины в тепловых диаграммах
- •Расчет теоретического цикла паровой компрессионной холодильной машины
- •Глава IV
- •Теоретический процесс
- •Действительный процесс
- •Объемные потери в компрессоре
- •Энергетические потери
- •Потеря мощности на трение
- •Действительная холодопроизводительность компрессора
- •Сравнительная оценка производительности холодильных машин
- •Номинальные режимы работы
- •Мощность, потребляемая компрессором
- •Холодопроизводительность нетто и брутто
- •Глава V
- •Двухступенчатые холодильные маiiшны
- •Каскадные холодильные машины
- •Глава VI
- •Назначение и классификация компрессоров
- •Основные конструктивные узлы и детали поршневых компрессоров
- •Вертикальные и у-образные прямоточные компрессоры
- •Аммиачные прямоточные компрессоры
- •Фреоновые прямоточные компрессоры
- •Непрямоточные компрессоры Фреоновые непрямоточные компрессоры
- •Фреоновые открытые (сальниковые) компрессоры
- •Фреоновые бессальниковые компрессоры
- •Фреоновые герметичные компрессоры
- •Компрессоры для бытовых холодильников
- •Экранированные герметичные компрессоры
- •Горизонтальные крейцкопфные компрессоры двойного действия
- •Двухступенчатые компрессоры
- •Ротационные компрессоры
- •Смазочные масла для холодильных компрессоров
- •Глава VII
- •Конденсаторы
- •Кожухотрубные конденсаторы
- •Кожухозмеевиковые конденсаторы
- •Оросительные конденсаторы
- •Испарительные конденсаторы
- •Конденсаторы с воздушным охлаждением
- •Расчет конденсаторов
- •Устройства для охлаждения рециркуляционной воды
- •Переохладители и теплообменники
- •Испарители
- •Испарители для охлаждения жидких теплоносителей
- •Расчет испарителей для охлаждения жидких теплоносителей
- •Испарители для охлаждения воздуха
- •Глава VIII
- •Маслоотделители
- •Маслосборники
- •Фильтры
- •Осушители фреона
- •Отделители жидкости
- •Воздухоотделители
- •Ресиверы
- •Трубопроводы и их соединения
- •Запорные и регулирующие вентили
- •Глава IX
- •Общие сведения
- •Регулирование заполнения испарителя
- •Терморегулирующие вентили трв
- •Капиллярные трубки
- •Поплавковые регулирующие вентили
- •Соленоидные вентили
- •Регулирование постоянной температуры воздуха в камерах пуском и остановкой компрессора
- •Реле температуры
- •Реле давления
- •Многопозиционное регулирование температуры
- •Регулирование температуры в нескольких камерах
- •Регулирование давления конденсации
- •Автоматическое оттаивание инея с охлаждающих приборов
- •Автоматическая защита и сигнализация
- •Глава X
- •Задачи агрегатирования и типы агрегатов
- •Komпpeccopho-конденсаторные агрегаты
- •Аммиачные компрессорно-конденсаторные агрегаты средней холодопроизводительности
- •Фреоновые компрессорно-конденсаторные агрегаты средней холодопроизводительности
- •Фреоновые компрессорно-конденсаторные агрегаты с открытыми компрессорами
- •Агрегаты с бессальниковыми компрессорами
- •Агрегаты с герметичными компрессорами
- •Глава XI
- •Аммиачные холодильные машины средней производительности
- •Фреоновые холодильные машины средней производительности
- •Малые холодильные машины
- •Глава XII
- •Принцип действия и классификация абсорбционных машин
- •Абсорбционные машины непрерывного действия
- •Абсорбционно-диффузионные холодильные машины
- •Глава XIII
- •Типы и устройство холодильников
- •Тепловая изоляция холодильников
- •Гидроизоляционные материалы
- •Изоляционные конструкции холодильников
- •Изоляция холодильных аппаратов и трубопроводов
- •Расчет тепловой изоляции
- •Системы охлаждения холодильников
- •Непосредственное охлаждение
- •Рассольное охлаждение
- •Воздушное охлаждение
- •Расчет камерного холодильного оборудования
- •Глава XIV
- •Порядок проектирования
- •Определение числа холодильных камер и расчет их площадей
- •Планировка холодильника
- •Вентиляция холодильников
- •Определение расчетных параметров
- •Калорический расчет
- •Расчет и выбор холодильного оборудования
- •Поверочный тепловой расчет машины
- •Глава XV
- •Общие сведения
- •Сборные холодильные камеры
- •Торговые холодильные шкафы
- •Охлаждаемые витрины
- •Охлаждаемые прилавки
- •Техническая характеристика низкотемпературных прилавков
- •Охлаждаемые прилавки-витрины
- •Комплектное торговое холодильное оборудование таир
- •Глава XVI
- •Назначение и типы бытовых холодильников
- •Устройство бытовых холодильников
- •Охлаждающие агрегаты бытовых холодильников
- •Холодильники зил модели 63 и «север-6»
- •Глава XVII
- •Обслуживание холодильного оборудования
- •Глава XVIII
- •Ледяное охлаждение
- •Типы и устройство ледников
- •Расчет ледников
- •Льдосоляное охлаждение
- •Расчет установок льдосоляного охлаждения
- •Заготовка естественного льда
- •Искусственный водный лед в блоках
- •Искусственный водный лед других форм
- •Сухой лед
- •Основные методы консервирования пищевых продуктов
- •Консервирование пищевых продуктов холодом
- •Вспомогательные средства, применяемые при холодильном хранении пищевых продуктов
- •Ультрафиолетовые лучи
- •Ионизирующее облучение
- •Углекислота
- •Антибиотики
- •Антиокислители
- •Тара и упаковочные материалы
- •Глава XX
- •Физические и биохимические изменения в пищевых продуктах при охлаждении
- •Охлаждающие среды
- •Техника охлаждения пищевых продуктов Охлаждение мяса и субпродуктов
- •Влияние продолжительности охлаждения на усушку мяса
- •Охлаждение битой птицы
- •Охлаждение яиц
- •Охлаждение рыбы
- •Охлаждение молока и молочных продуктов
- •Охлаждение плодов и овощей
- •Глава XXI
- •Основные вопросы теории замораживания пищевых продуктов
- •Способы замораживания
- •Средства замораживания
- •Морозильные камеры
- •Скороморозильные аппараты
- •Техническая характеристика аппарата гкл-2
- •Техническая характеристика аппарата гка-4 (с 14 полками)
- •Техническая характеристика линии фмб-2 с одним мембранным аппаратом
- •Техника замораживания пищевых продуктов
- •Способы замораживания говяжьих полутуш
- •Глава XXII
- •Хранение продуктов на распределительных холодильниках
- •Усушка продуктов при холодильном хранении
- •Технология хранения отдельных видов пищевых продуктов
- •Хранение продуктов в холодильниках предприятий общественного питания и магазинов
- •Глава XXIII
- •Отепление продуктов
- •Размораживание продуктов
- •Размораживание и разогревание готовых блюд и кулинарных изделий
- •Глава XXIV
- •Железнодорожный холодильный транспорт
- •Автомобильный холодильный транспорт
- •Другие виды перевозок
- •Список использованной литературы
- •Оглавление
Ионизирующее облучение
Ионизирующее облучение является новым и весьма перспективным методом сохранения пищевых продуктов. Сущность губительного действия этого вида излучения на микроорганизмы полностью пока не раскрыта. Полагают, что разрушение живых клеток происходит от удара заряженных частиц. Кроме того, сильное бактерицидное действие на микроорганизмы оказывает ионизированная среда, создаваемая при излучении.
Под влиянием ионизирующего излучения значительно замедляются или совсем приостанавливаются и ферментативные процессы. Но ферменты более устойчивы к этому виду облучения, чем микроорганизмы; для разрушения их требуется в несколько раз большая доза облучения, чем для отмирания микроорганизмов.
Радиоактивность изотопов измеряется в единицах кюри или килокюри, а доза облучения - в фэрах. Фэр - физический эквивалент рентгена или физическая единица, соответствующая дозе поглощенной энергии излучения, равной 83 эргам на 1 г материала.
При установлении доз облучения необходимо иметь в виду нежелательные изменения в облученных продуктах, зависящие от интенсивности процесса. Так, у мяса появляется темная окраска, специфический запах и привкус, а у рыбы - посторонний привкус. Особенно подвержены нежелательным изменениям жиры.
Обработка пищевых продуктов небольшими дозами ионизирующего излучения (около 105 фэр) называется ридиопастеризацией. Радиопастеризация в сочетании с охлаждением или замораживанием дает очень хорошие результаты.
Углекислота
Углекислотой пользуются главным образом как вспомогательным средством консервирования, которое в сочетании с холодом дает хорошие результаты. Применяют углекислоту в газообразном виде в смеси с воздухом разной концентрации. Правильное сочетание концентрации углекислоты и температурных условий увеличивает в 1,5-2 раза срок хранения пищевых продуктов. Углекислота подавляет жизнедеятельность микроорганизмов, особенно плесеней и бактерий.
Обладая высокой растворимостью в жире, углекислота уменьшает содержание в нем кислорода и этим замедляет процессы окисления. Опыт показывает, что углекислый газ даже в небольших концентрациях заметно задерживает окисление жира.
Консервирование плодов с помощью углекислоты основано на снижении количества кислорода в воздухе, где хранятся эти продукты. При хранении плодов накопление СО2 в атмосфере хранилища достигается и за счет их дыхания. Соответственно уменьшается содержание кислорода, необходимого плодам для дыхания, поэтому оно замедляется, а так как изменение химического состава плодов, приводящее их к порче, происходит в основном в результате дыхания, то замедляя его, углекислота способствует удлинению срока хранения. При правильном применении углекислоты срок хранения плодов увеличивается в 2-3 раза.
Практически углекислоту для сохранения пищевых продуктов используют следующим образом. Продукты помещают в специальные хранилища, контейнеры или тару, в которые поступает углекислота из присоединяемых к ним баллонов или в виде сухого льда, превращающегося здесь в газообразную углекислоту. Стационарные хранилища строят обычно герметичными, а тару и контейнеры герметичными и газонепроницаемыми. Изготавливают тару и контейнеры из разных материалов: металла, дерева, пластмассы, картона и др., а для создания герметичности покрывают газонепроницаемой пленкой или специальным составом. Для железнодорожных перевозок продуктов применяют обычно изотермические контейнеры.
Когда продукт переносят из углекислотной среды в обычную, происходит выделение из него углекислоты, десорбция.
Озон
Известно, что молекула озона состоит из трех атомов кислорода. Один из них легко выделяется и может производить сильное окисляющее действие. Это свойство озона используют для различных технических целей и, в частности, для достижения бактериостатического эффекта при хранении пищевых продуктов в холодильных камерах.
Большинство исследований в этом направлении и практика показывают, что во многих случаях использование свойств озона для обеззараживания и устранения нежелательного запаха в холодильных камерах дает весьма положительные результаты. В определенных концентрациях озон способен подавлять и прекращать развитие бактерий и плесеней, а также и их спор, как на поверхности продукта, так и в воздухе.
На практике озоном пользуются главным образом для подготовки камер к приему продуктов. Камеры обычно дезинфицируют каким-либо другим веществом, а затем озонируют для устранения посторонних запахов. Целесообразно пользоваться озоном и как основным средством дезинфекции. В этом случае его концентрацию увеличивают. Озоном рекомендуется дезинфицировать только пустые камеры. Озонирование пустых камер при температуре воздуха в них 0°, относительной влажности 90% и концентрации озона 20-25 мг/м3 обеспечивает полную очистку их от микроорганизмов в течение 3 суток. Концентрацию озона можно доводить до 40 мг/м3, тогда полная очистка воздуха достигается в течение 2 суток.
Озон при концентрациях в воздухе более 2 мг/м3 вредно действует на организм человека. Поэтому озонирование камер должно производиться в отсутствие обслуживающего персонала, либо он должен пользоваться предохранительными масками. Нельзя также находиться без масок в озонированных камерах при концентрации озона более 2 мг/м3.
Озон для практических целей получают в специальных приборах - озонаторах, где под действием тихого (не искрового) электрического разряда высокого напряжения образуется трехатомный кислород (озон) из двухатомного кислорода воздуха. В холодильной практике применяют озонаторы двух типов: стационарные и передвижные.