
- •Предисловие
- •Глава IX написана совместно с в.И. Канторовичем, главы XIX-XXII - при участии к.П. Венгер. Главы х и XXIV написаны а.М. Кореневым.
- •Термодинамический принцип машинного охлаждения
- •Холодопроизводительность и холодильный коэффициент компрессионной машины.
- •Идеальный цикл паровой Компрессионной холодильной машины
- •Глава II
- •Требования к холодильным агентам
- •Вещества, применяемые в качестве холодильных агентов
- •Характеристика холодильных агентов
- •Характеристика холодильных агентов
- •Азеотропные смеси
- •Хранение и перевозка холодильных агентов
- •Глава III
- •Цикл с переохлаждением холодильного агента
- •Цикл при работе компрессора сухим ходом
- •Теоретический цикл паровой компрессионной холодильной машины
- •Построение теоретического цикла паровой компрессионной холодильной машины в тепловых диаграммах
- •Расчет теоретического цикла паровой компрессионной холодильной машины
- •Глава IV
- •Теоретический процесс
- •Действительный процесс
- •Объемные потери в компрессоре
- •Энергетические потери
- •Потеря мощности на трение
- •Действительная холодопроизводительность компрессора
- •Сравнительная оценка производительности холодильных машин
- •Номинальные режимы работы
- •Мощность, потребляемая компрессором
- •Холодопроизводительность нетто и брутто
- •Глава V
- •Двухступенчатые холодильные маiiшны
- •Каскадные холодильные машины
- •Глава VI
- •Назначение и классификация компрессоров
- •Основные конструктивные узлы и детали поршневых компрессоров
- •Вертикальные и у-образные прямоточные компрессоры
- •Аммиачные прямоточные компрессоры
- •Фреоновые прямоточные компрессоры
- •Непрямоточные компрессоры Фреоновые непрямоточные компрессоры
- •Фреоновые открытые (сальниковые) компрессоры
- •Фреоновые бессальниковые компрессоры
- •Фреоновые герметичные компрессоры
- •Компрессоры для бытовых холодильников
- •Экранированные герметичные компрессоры
- •Горизонтальные крейцкопфные компрессоры двойного действия
- •Двухступенчатые компрессоры
- •Ротационные компрессоры
- •Смазочные масла для холодильных компрессоров
- •Глава VII
- •Конденсаторы
- •Кожухотрубные конденсаторы
- •Кожухозмеевиковые конденсаторы
- •Оросительные конденсаторы
- •Испарительные конденсаторы
- •Конденсаторы с воздушным охлаждением
- •Расчет конденсаторов
- •Устройства для охлаждения рециркуляционной воды
- •Переохладители и теплообменники
- •Испарители
- •Испарители для охлаждения жидких теплоносителей
- •Расчет испарителей для охлаждения жидких теплоносителей
- •Испарители для охлаждения воздуха
- •Глава VIII
- •Маслоотделители
- •Маслосборники
- •Фильтры
- •Осушители фреона
- •Отделители жидкости
- •Воздухоотделители
- •Ресиверы
- •Трубопроводы и их соединения
- •Запорные и регулирующие вентили
- •Глава IX
- •Общие сведения
- •Регулирование заполнения испарителя
- •Терморегулирующие вентили трв
- •Капиллярные трубки
- •Поплавковые регулирующие вентили
- •Соленоидные вентили
- •Регулирование постоянной температуры воздуха в камерах пуском и остановкой компрессора
- •Реле температуры
- •Реле давления
- •Многопозиционное регулирование температуры
- •Регулирование температуры в нескольких камерах
- •Регулирование давления конденсации
- •Автоматическое оттаивание инея с охлаждающих приборов
- •Автоматическая защита и сигнализация
- •Глава X
- •Задачи агрегатирования и типы агрегатов
- •Komпpeccopho-конденсаторные агрегаты
- •Аммиачные компрессорно-конденсаторные агрегаты средней холодопроизводительности
- •Фреоновые компрессорно-конденсаторные агрегаты средней холодопроизводительности
- •Фреоновые компрессорно-конденсаторные агрегаты с открытыми компрессорами
- •Агрегаты с бессальниковыми компрессорами
- •Агрегаты с герметичными компрессорами
- •Глава XI
- •Аммиачные холодильные машины средней производительности
- •Фреоновые холодильные машины средней производительности
- •Малые холодильные машины
- •Глава XII
- •Принцип действия и классификация абсорбционных машин
- •Абсорбционные машины непрерывного действия
- •Абсорбционно-диффузионные холодильные машины
- •Глава XIII
- •Типы и устройство холодильников
- •Тепловая изоляция холодильников
- •Гидроизоляционные материалы
- •Изоляционные конструкции холодильников
- •Изоляция холодильных аппаратов и трубопроводов
- •Расчет тепловой изоляции
- •Системы охлаждения холодильников
- •Непосредственное охлаждение
- •Рассольное охлаждение
- •Воздушное охлаждение
- •Расчет камерного холодильного оборудования
- •Глава XIV
- •Порядок проектирования
- •Определение числа холодильных камер и расчет их площадей
- •Планировка холодильника
- •Вентиляция холодильников
- •Определение расчетных параметров
- •Калорический расчет
- •Расчет и выбор холодильного оборудования
- •Поверочный тепловой расчет машины
- •Глава XV
- •Общие сведения
- •Сборные холодильные камеры
- •Торговые холодильные шкафы
- •Охлаждаемые витрины
- •Охлаждаемые прилавки
- •Техническая характеристика низкотемпературных прилавков
- •Охлаждаемые прилавки-витрины
- •Комплектное торговое холодильное оборудование таир
- •Глава XVI
- •Назначение и типы бытовых холодильников
- •Устройство бытовых холодильников
- •Охлаждающие агрегаты бытовых холодильников
- •Холодильники зил модели 63 и «север-6»
- •Глава XVII
- •Обслуживание холодильного оборудования
- •Глава XVIII
- •Ледяное охлаждение
- •Типы и устройство ледников
- •Расчет ледников
- •Льдосоляное охлаждение
- •Расчет установок льдосоляного охлаждения
- •Заготовка естественного льда
- •Искусственный водный лед в блоках
- •Искусственный водный лед других форм
- •Сухой лед
- •Основные методы консервирования пищевых продуктов
- •Консервирование пищевых продуктов холодом
- •Вспомогательные средства, применяемые при холодильном хранении пищевых продуктов
- •Ультрафиолетовые лучи
- •Ионизирующее облучение
- •Углекислота
- •Антибиотики
- •Антиокислители
- •Тара и упаковочные материалы
- •Глава XX
- •Физические и биохимические изменения в пищевых продуктах при охлаждении
- •Охлаждающие среды
- •Техника охлаждения пищевых продуктов Охлаждение мяса и субпродуктов
- •Влияние продолжительности охлаждения на усушку мяса
- •Охлаждение битой птицы
- •Охлаждение яиц
- •Охлаждение рыбы
- •Охлаждение молока и молочных продуктов
- •Охлаждение плодов и овощей
- •Глава XXI
- •Основные вопросы теории замораживания пищевых продуктов
- •Способы замораживания
- •Средства замораживания
- •Морозильные камеры
- •Скороморозильные аппараты
- •Техническая характеристика аппарата гкл-2
- •Техническая характеристика аппарата гка-4 (с 14 полками)
- •Техническая характеристика линии фмб-2 с одним мембранным аппаратом
- •Техника замораживания пищевых продуктов
- •Способы замораживания говяжьих полутуш
- •Глава XXII
- •Хранение продуктов на распределительных холодильниках
- •Усушка продуктов при холодильном хранении
- •Технология хранения отдельных видов пищевых продуктов
- •Хранение продуктов в холодильниках предприятий общественного питания и магазинов
- •Глава XXIII
- •Отепление продуктов
- •Размораживание продуктов
- •Размораживание и разогревание готовых блюд и кулинарных изделий
- •Глава XXIV
- •Железнодорожный холодильный транспорт
- •Автомобильный холодильный транспорт
- •Другие виды перевозок
- •Список использованной литературы
- •Оглавление
Цикл с переохлаждением холодильного агента
Большинство современных установок для увеличения ε работает с переохлаждением холодильного агента.
П
ереохлаждение
заключается в том, что образующая при
конденсации холодильного агента жидкость
охлаждается без изменения давления на
несколько градусов ниже температуры,
соответствующей давлению насыщенных
паров в конденсаторе.
В s, Т-диаграмме процесс переохлаждения изображается линией 3'-3 (рис.6), практически совпадающей с левой пограничной кривой, так как для большинства холодильных агентов изобары жидкого состояния вещества совпадают с левой пограничной кривой. Конечная температура холодильного агента при переохлаждении (в точке 3) называется температурой переохлаждения и обозначается буквой tп. С этой температурой холодильный агент поступает к регулирующему вентилю.
В регулирующем вентиле процесс дросселирования при работе с переохлаждением протекает по изоэнтальпе 3-4, соответствующей меньшему значению энтальпии, чем в цикле без переохлаждения. Точка 4, соответствующая состоянию холодильного агента в конце процесса дросселирования, расположена на изобаре кипения значительно ближе к кривой жидкости (х=0), чем точка 4'. В связи с этим процесс кипения в испарителе изображается отрезком 4-1', благодаря чему холодопроизводительность каждого килограмма холодильного агента возрастает на величину ∆q0', изображенную на диаграмме пл. d-4-4'-a (горизонтальная штриховка), т.е. выражается уже не величиной q0=пл.a-4'-1'-b-a, а величиной q0=q0'+∆q0'пл.d-4-1'-b-d. Затрачиваемая же в компрессоре работа сжатия l остается без изменения и графически изображается, как и в цикле без переохлаждения, пл.1'-2'-3'-с-1'. Таким образом, переохлаждение холодильного агента вызывает увеличение холодопроизводительности машины без увеличения затраты работы в компрессоре, т.е. повышение холодильного коэффициента.
Практически переохлаждение производится до температуры на 5-10°С ниже температуры конденсации. Достигается это в конденсаторе или в отдельном аппарате - переохладителе, который располагают между конденсатором и регулирующим вентилем.
Во фреоновых холодильных машинах переохлаждение осуществляется обычно в специальных теплообменниках, охлаждающей средой в которых служат пары холодильного агента, отсасываемые из испарителя компрессором.
Цикл при работе компрессора сухим ходом
В компрессор могут поступать пары холодильного агента различного состояния: влажные, насыщенные и перегретые. В рассмотренных циклах (см. рис.5 и 6) принималось, что компрессор всасывает влажный насыщенный пар или, как говорят, работает влажным ходом. При всасывании сухих насыщенных паров или несколько перегретых (при давлении кипения p0) принято говорить, что компрессор работает сухим ходом. Этот цикл показан на рис.7 сплошными линиями.
Т
еоретически
выгоднее работа влажным ходом, так как
при этом цикл холодильной машины ближе
к обратному циклу Карно. Однако практически
производительность компрессора при
влажном ходе всегда и для всех холодильных
агентов значительно ниже, чем при сухом.
Это объясняется главным образом тем,
что в теоретическом процессе не учитывают
вредного влияния теплообмена между
паром и стенками цилиндра компрессора,
который всегда наблюдается при работе
машины.
В действительном процессе работы компрессора во время сжатия температура пара повышается, и тепловой поток направлен от пара к стенкам цилиндра. Во время процесса всасывания тепловой поток имеет противоположное направление от стенок цилиндра к пару, что вызывает увеличение удельного объема последнего и уменьшение массы пара, поступающего в цилиндр компрессора, а, следовательно, снижение производительности машины. При влажном ходе в компрессор засасываются капли жидкости, которые при входе в цилиндр, в результате резкого уменьшения скорости пара, отделяются от него и оседают на стенках цилиндра, нагретых во время предыдущего процесса сжатия. При соприкосновении капель жидкости с горячей поверхностью стенок цилиндра происходит образование пара, что уменьшает количество всасываемого холодильного агента, а, следовательно, снижает производительность компрессора. Поэтому производительность компрессора при влажном ходе меньше, чем при сухом.
Почти во всех холодильных установках компрессоры работают сухим ходом. В аммиачных машинах сухой ход компрессора достигается обычно при помощи специального аппарата - отделителя жидкости или регулированием подач холодильного агента в испаритель.
Отделитель жидкости включается во всасывающую линию холодильной установки между испарителем и компрессором (рис.8).
Во фреоновых машинах сухой ход компрессора достигается либо при помощи специальных теплообменников (см. с.126), либо тоже путем регулирования подачи холодильного агента в испаритель.
Рис.8. Схема паровой компрессионной холодильной машины с переохладителем и отделителем жидкости:
1 - компрессор, 2 - конденсатор, 3 - регулирующий вентиль, 4 - испаритель, 5 - переохладитель, 6 - отделитель жидкости, 7 - запорные вентили.