
- •Предисловие
- •Глава IX написана совместно с в.И. Канторовичем, главы XIX-XXII - при участии к.П. Венгер. Главы х и XXIV написаны а.М. Кореневым.
- •Термодинамический принцип машинного охлаждения
- •Холодопроизводительность и холодильный коэффициент компрессионной машины.
- •Идеальный цикл паровой Компрессионной холодильной машины
- •Глава II
- •Требования к холодильным агентам
- •Вещества, применяемые в качестве холодильных агентов
- •Характеристика холодильных агентов
- •Характеристика холодильных агентов
- •Азеотропные смеси
- •Хранение и перевозка холодильных агентов
- •Глава III
- •Цикл с переохлаждением холодильного агента
- •Цикл при работе компрессора сухим ходом
- •Теоретический цикл паровой компрессионной холодильной машины
- •Построение теоретического цикла паровой компрессионной холодильной машины в тепловых диаграммах
- •Расчет теоретического цикла паровой компрессионной холодильной машины
- •Глава IV
- •Теоретический процесс
- •Действительный процесс
- •Объемные потери в компрессоре
- •Энергетические потери
- •Потеря мощности на трение
- •Действительная холодопроизводительность компрессора
- •Сравнительная оценка производительности холодильных машин
- •Номинальные режимы работы
- •Мощность, потребляемая компрессором
- •Холодопроизводительность нетто и брутто
- •Глава V
- •Двухступенчатые холодильные маiiшны
- •Каскадные холодильные машины
- •Глава VI
- •Назначение и классификация компрессоров
- •Основные конструктивные узлы и детали поршневых компрессоров
- •Вертикальные и у-образные прямоточные компрессоры
- •Аммиачные прямоточные компрессоры
- •Фреоновые прямоточные компрессоры
- •Непрямоточные компрессоры Фреоновые непрямоточные компрессоры
- •Фреоновые открытые (сальниковые) компрессоры
- •Фреоновые бессальниковые компрессоры
- •Фреоновые герметичные компрессоры
- •Компрессоры для бытовых холодильников
- •Экранированные герметичные компрессоры
- •Горизонтальные крейцкопфные компрессоры двойного действия
- •Двухступенчатые компрессоры
- •Ротационные компрессоры
- •Смазочные масла для холодильных компрессоров
- •Глава VII
- •Конденсаторы
- •Кожухотрубные конденсаторы
- •Кожухозмеевиковые конденсаторы
- •Оросительные конденсаторы
- •Испарительные конденсаторы
- •Конденсаторы с воздушным охлаждением
- •Расчет конденсаторов
- •Устройства для охлаждения рециркуляционной воды
- •Переохладители и теплообменники
- •Испарители
- •Испарители для охлаждения жидких теплоносителей
- •Расчет испарителей для охлаждения жидких теплоносителей
- •Испарители для охлаждения воздуха
- •Глава VIII
- •Маслоотделители
- •Маслосборники
- •Фильтры
- •Осушители фреона
- •Отделители жидкости
- •Воздухоотделители
- •Ресиверы
- •Трубопроводы и их соединения
- •Запорные и регулирующие вентили
- •Глава IX
- •Общие сведения
- •Регулирование заполнения испарителя
- •Терморегулирующие вентили трв
- •Капиллярные трубки
- •Поплавковые регулирующие вентили
- •Соленоидные вентили
- •Регулирование постоянной температуры воздуха в камерах пуском и остановкой компрессора
- •Реле температуры
- •Реле давления
- •Многопозиционное регулирование температуры
- •Регулирование температуры в нескольких камерах
- •Регулирование давления конденсации
- •Автоматическое оттаивание инея с охлаждающих приборов
- •Автоматическая защита и сигнализация
- •Глава X
- •Задачи агрегатирования и типы агрегатов
- •Komпpeccopho-конденсаторные агрегаты
- •Аммиачные компрессорно-конденсаторные агрегаты средней холодопроизводительности
- •Фреоновые компрессорно-конденсаторные агрегаты средней холодопроизводительности
- •Фреоновые компрессорно-конденсаторные агрегаты с открытыми компрессорами
- •Агрегаты с бессальниковыми компрессорами
- •Агрегаты с герметичными компрессорами
- •Глава XI
- •Аммиачные холодильные машины средней производительности
- •Фреоновые холодильные машины средней производительности
- •Малые холодильные машины
- •Глава XII
- •Принцип действия и классификация абсорбционных машин
- •Абсорбционные машины непрерывного действия
- •Абсорбционно-диффузионные холодильные машины
- •Глава XIII
- •Типы и устройство холодильников
- •Тепловая изоляция холодильников
- •Гидроизоляционные материалы
- •Изоляционные конструкции холодильников
- •Изоляция холодильных аппаратов и трубопроводов
- •Расчет тепловой изоляции
- •Системы охлаждения холодильников
- •Непосредственное охлаждение
- •Рассольное охлаждение
- •Воздушное охлаждение
- •Расчет камерного холодильного оборудования
- •Глава XIV
- •Порядок проектирования
- •Определение числа холодильных камер и расчет их площадей
- •Планировка холодильника
- •Вентиляция холодильников
- •Определение расчетных параметров
- •Калорический расчет
- •Расчет и выбор холодильного оборудования
- •Поверочный тепловой расчет машины
- •Глава XV
- •Общие сведения
- •Сборные холодильные камеры
- •Торговые холодильные шкафы
- •Охлаждаемые витрины
- •Охлаждаемые прилавки
- •Техническая характеристика низкотемпературных прилавков
- •Охлаждаемые прилавки-витрины
- •Комплектное торговое холодильное оборудование таир
- •Глава XVI
- •Назначение и типы бытовых холодильников
- •Устройство бытовых холодильников
- •Охлаждающие агрегаты бытовых холодильников
- •Холодильники зил модели 63 и «север-6»
- •Глава XVII
- •Обслуживание холодильного оборудования
- •Глава XVIII
- •Ледяное охлаждение
- •Типы и устройство ледников
- •Расчет ледников
- •Льдосоляное охлаждение
- •Расчет установок льдосоляного охлаждения
- •Заготовка естественного льда
- •Искусственный водный лед в блоках
- •Искусственный водный лед других форм
- •Сухой лед
- •Основные методы консервирования пищевых продуктов
- •Консервирование пищевых продуктов холодом
- •Вспомогательные средства, применяемые при холодильном хранении пищевых продуктов
- •Ультрафиолетовые лучи
- •Ионизирующее облучение
- •Углекислота
- •Антибиотики
- •Антиокислители
- •Тара и упаковочные материалы
- •Глава XX
- •Физические и биохимические изменения в пищевых продуктах при охлаждении
- •Охлаждающие среды
- •Техника охлаждения пищевых продуктов Охлаждение мяса и субпродуктов
- •Влияние продолжительности охлаждения на усушку мяса
- •Охлаждение битой птицы
- •Охлаждение яиц
- •Охлаждение рыбы
- •Охлаждение молока и молочных продуктов
- •Охлаждение плодов и овощей
- •Глава XXI
- •Основные вопросы теории замораживания пищевых продуктов
- •Способы замораживания
- •Средства замораживания
- •Морозильные камеры
- •Скороморозильные аппараты
- •Техническая характеристика аппарата гкл-2
- •Техническая характеристика аппарата гка-4 (с 14 полками)
- •Техническая характеристика линии фмб-2 с одним мембранным аппаратом
- •Техника замораживания пищевых продуктов
- •Способы замораживания говяжьих полутуш
- •Глава XXII
- •Хранение продуктов на распределительных холодильниках
- •Усушка продуктов при холодильном хранении
- •Технология хранения отдельных видов пищевых продуктов
- •Хранение продуктов в холодильниках предприятий общественного питания и магазинов
- •Глава XXIII
- •Отепление продуктов
- •Размораживание продуктов
- •Размораживание и разогревание готовых блюд и кулинарных изделий
- •Глава XXIV
- •Железнодорожный холодильный транспорт
- •Автомобильный холодильный транспорт
- •Другие виды перевозок
- •Список использованной литературы
- •Оглавление
Расчет и выбор холодильного оборудования
По результатам калорического расчета, учитывая число, расположение и требуемые температуры воздуха холодильных камер, выбирают систему охлаждения. Для холодильников предприятий общественного питания при общей площади их охлаждаемых помещений до 150 м2 целесообразно применять непосредственное охлаждение несколькими небольшими фреоновыми машинами.
Если суммарная площадь камер более 150 м2 или число их более шести, следует применять одну или две централизованные холодильные установки с рассольной системой охлаждения камер.
Если принимают систему непосредственного охлаждения, то для подбора машин следует камеры объединить в группы с приблизительно одинаковыми температурами и расходами холода с тем, чтобы для каждой группы предусмотреть по одной холодильной машине.
Потребная холодопроизводительность автоматической машины определяется из уравнения
,
(58)
где ΣQ - общий расход холода по охлаждаемым камерам, Вт;
b - коэффициент рабочего времени машины;
φ - коэффициент утечки холода в установке.
Для малых холодильных машин b следует принимать равным 0,75, а для машин средней холодопроизводительности b=0,8.
Коэффициент утечки холода для машин системы непосредственного охлаждения малой и средней производительности рекомендуется принимать равным 0,90-0,95 и для машин системы рассольного охлаждения 0,85-0,90.
По найденному значению Q0брутто, пользуясь каталогом или справочником, выбирают соответствующую модель машины.
Поверочный тепловой расчет машины
При расчете комплектно поставленных машин, включающих компрессорно-конденсаторный агрегат, испарители и другие элементы, нельзя задаваться температурным режимом их работы. Он может быть определен только специальным поверочным тепловым расчетом намеченной к установке машины.
Целью поверочного расчета является выяснение, сможет ли выбранная машина обеспечить нужные температуры воздуха в камерах при известном теплопритоке, не превышая допустимого значения коэффициента рабочего времени b. Для этого определяют действительный температурный режим работы и действительный коэффициент рабочего времени машины. В рассмотренных автоматических машинах компрессор работает только в рабочей части цикла, а испаритель - непрерывно. Поэтому компрессор рассчитывают по температуре кипения tор средней за рабочий период цикла, а испаритель - по температуре кипения tоц средней за весь цикл.
В поверочном расчете сначала определяют температуру кипения среднюю за весь цикл tоц из уравнения теплообмена в испарителе, которое при охлаждении машиной только одной камеры имеет вид.
,
(59)
откуда
.
(60)
При охлаждении одной машиной n камер уравнение теплообмена в испарителях принимает вид
,
откуда
.
В этих формулах
Qкам, Qкам1, Qкам2,…, Qкамn - расход холода по соответствующим камерам, Вт;
kи, kиl, kи2,…, kиn - коэффициенты теплопередачи испарителей, Вт/(м2·°С);
Fи, Fиl, Fи2,…, Fиn - поверхности испарителей, м2;
tкам, tкам1, tкам2,…, tкамn - температуры воздуха в соответствующих камерах, °С.
Экспериментальными работами и специальными расчетами установлено, что температура кипения холодильного агента средняя за рабочий период цикла top машин малой холодопроизводительности, работающих на охлаждение камер с температурой воздуха от -2° до +4°С, примерно на 3°С ниже температуры кипения холодильного агента средней за весь цикл tоц, т.е.
.
(61)
По найденному значению tор определяют действительную рабочую холодопроизводительность Qop выбранной к установке машины. Это делается по характеристике машины, представленной в координатах Q0 - t0 и помечаемой в каталогах и справочниках (см. рис.106).
При определении Qop по такому графику следует задаться температурой конденсации и брать значения Qop по кривой, относящейся к этой температуре. Для агрегатов с водяным охлаждением конденсатора поддержание принятой температуры конденсации обеспечивается водорегулирующим вентилем. В агрегатах с воздушным охлаждением конденсатора температура конденсации устанавливается в соответствии с температурой окружающего воздуха и холодопроизводительностью компрессора. В этом случае температурой конденсации можно вначале задаться, а после расчета конденсатора уточнить ее.
Для машин с воздушным охлаждением конденсатора, температура конденсации может быть подсчитана по уравнению
,
(62)
где
tв - температура
окружающего (конденсатор) воздуха, °С;
kк - коэффициент теплопередачи конденсатора, Вт/(м2·°С);
Fк - теплопередающая поверхность конденсатора, м2;
Qк - тепловая нагрузка на конденсатор, Вт.
Если подсчитанная таким образом температура будет отличаться от первоначально принятой более чем на 2°С, расчет следует повторить.
Действительный коэффициент рабочего времени холодильной машины может быть выражен как отношение общего расхода холода по данной группе камер ΣQкам к рабочей холодопроизводительности машины (агрегата), выбранной для охлаждения этой группы камер Qор, то есть
.
(63)
Полученное значение коэффициента рабочего времени должно находиться в пределах от 0,4 до 0,7. Более высокие значения b показывают, что производительность выбранного агрегата недостаточна; следует взять другой агрегат, большей производительности, и повторить расчет. Если в результате расчета получится, что b<4, то это означает, что выбранный агрегат будет мало использоваться, тогда нужно принять агрегат с меньшей холодопроизводительностью и повторить расчет. Когда соотношение тепловых нагрузок не соответствует возможному распределению испарителей по камерам при отсутствии в них реле температуры, следует после поверочного, расчета машины проверить, будет ли обеспечено поддержание заданной температуры в камерах. Для этого пользуются тем же уравнением теплопередачи испарителя для каждой камеры (59), но подставляют в него найденное значение температуры кипения tоп, а определяют температуру воздуха в камере tкам:
.
(64)
Если найденное значение температуры воздуха в камере более чем на 2°С отклоняется от номинального ее значения, то следует рассмотреть вариант иного размещения испарителей по камерам или заказать испарители сверх комплекта.
При поверочном расчете холодильной установки с системой рассольного охлаждения можно принимать коэффициент рабочего времени b=0,9 и рассчитывать испаритель на непрерывную работу компрессора, т.е. принимать tоц≈tор=t0. Рабочая температура кипения определится по уравнениям:
,
(65)
,
(66)
где tpm - средняя температура рассола, ºС;
t0 - температура кипения, °С.
В этом расчете одной из величин tpm или t0 можно задаться. Другую подсчитывают по уравнению. Определение температуры кипения можно выполнить и графически. Для этого на графике Q0 – t0, представляющем характеристику агрегата, проводят прямую Qи=kиFи(tpm-t0), которая является характеристикой испарителя. Точка пересечения кривой Q0 и прямой Qи будет соответствовать искомой температуре кипения.