Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Mescheryakov.doc
Скачиваний:
3
Добавлен:
01.04.2025
Размер:
27.44 Mб
Скачать

Регулирование давления конденсации

При включении компрессора давление и температура в конденсаторе повышаются до тех пор, пока количество тепла, отводимого воздухом или водой при охлаждении и конденсации пара, не сравняется с количеством тепла, которое поступает из компрессора с горячим паром. Поверхность конденсатора обычно выбрана с таким расчетом, что разность между температурой конденсации и средней температурой охлаждающей воды при расчетном режиме устанавливается примерно 5÷10°. При увеличении количества воды, подаваемой в конденсатор, температура ее на выходе tвд2 будет меньше (tвд1=const). Это снижает среднюю температуру воды и температуру (и давление) конденсации. До известного предела снижение давления конденсации экономически выгодно, так как связанное с этим снижение расхода электроэнергии, увеличение холодопроизводительности машины и повышение ее надежности с избытком окупает увеличение расхода на воду. Однако дальнейшее увеличение расхода воды уже нецелесообразно, так как снижение давления становится незначительным, а расходы на воду резко возрастают.

Оптимальное давление конденсации зависит от температуры поступающей воды, режима работы машины, соотношения стоимости 1 м3 воды и 1 кВт·ч электроэнергии, от степени влияния давления конденсации на надежность машины и других факторов.

Так, например, для условий Москвы при летнем режиме (tвд1=20°С) оптимальный нагрев воды в конденсаторе 6-8°С, что соответствует избыточному давлению конденсации во фреоновых машинах 0,6-0,66 МПа. Для южных районов (tвд1=25°С) оптимальное давление конденсации 0,7-0,76 МПа.

З имой (tвд1=3÷5°С) указанному оптимальному давлению конденсации соответствует температура воды в конденсаторе 20-25°С.

Оптимальное давление конденсации может поддерживаться автоматически при помощи водорегулирующего вентиля ВРВ (рис.80). Пары фреона со стороны нагнетания по трубке подаются к штуцеру ВР. При повышении давления конденсации клапан ВР опускается вниз, преодолевая сопротивление пружины, и увеличивает подачу воды в конденсатор. Двойное уплотнение (сильфон 3 и мембрана 2) надежно предохраняет от прорыва фреона в водяную магистраль.

Давление, при котором открывается вентиль, регулируется натяжением пружины 1.

Для экономии воды вместо ВРВ иногда применяют соленоидные вентили, которые при остановке автоматически закрывают подачу воды на конденсатор. Давление конденсации при этом, естественно, меняется. Переменное давление конденсации ухудшает работу ТРВ или другого устройства, регулирующего заполнение испарителя. Поэтому на машинах с водяным охлаждением конденсатора целесообразно устанавливать ВРВ.

Автоматическое оттаивание инея с охлаждающих приборов

Испарители или рассольные охлаждающие батареи, используемые для охлаждения воздуха, обычно имеют температуру ниже 0°С. На поверхности их образуется слой инея. Скорость нарастания инея зависит от влажности охлаждаемого воздуха и температуры охлаждающей поверхности. Небольшой слой инея (до 1 мм) сначала даже увеличивает коэффициент теплопередачи k, так как иголочки снега как бы увеличивают поверхность, но уже через 2 дня иней уплотняется и значительно ухудшает коэффициент теплопередачи батареи, что снижает экономичность работы холодильной машины. Например, в торговых шкафах иней толщиной 3-4 мм увеличивает расход электроэнергии на 50-60%. При образовании сплошной снеговой «шубы» (без просвета между ребрами) расход электроэнергии возрастает в 3-4 раза.

Если температура в шкафу регулируется путем поддержания определенной температуры испарителя или давления кипения, то нарастание инея приводит к повышению температуры в камере. В этом случае происходит относительный перерасход электроэнергии, так как для поддержания той же температуры в камере приходится настраивать РДН на более низкое давление кипения холодильного агента, при котором машина работает менее экономично.

Первичными приборами, реагирующими на образование инея, служат:

реле температуры, чувствительный элемент которого расположен в воздушной среде с плюсовой температурой (когда нарастающий иней коснется термометра, температура его снизится до нуля);

дифференциальное реле температуры, воспринимающее разность температуры в камере и температуры кипения (с увеличением слоя инея разность tкам-t0) возрастает;

емкостный датчик;

программное реле, включающее оттаивающее устройство через определенные интервалы времени.

В последнем случае толщина слоя инея за время работы машины может оказаться различной. Поэтому и продолжительность удаления инея будет разной. Для прекращения оттаивания часто используют реле температуры испарителя, которое включает компрессор в нормальную работу, когда температура испарителя достигнет 1-2°С, т.е. иней полностью растет. Включить компрессор может и реле низкого давления, настроенное на соответствующее избыточное давление включения (для фреона-12 - 0,22-0,24 МПа).

Различают три способа автоматического оттаивания инея: воздухом камеры; горячим паром холодильного агента из компрессора; дополнительным источником тепла (электронагревателем, теплой водой, горячим рассолом, наружным воздухом).

Первый способ может быть использован только в том случае, когда в камере поддерживается плюсовая температура (+3÷+4°С). При некоторых режимах цикличной работы холодильной машины слой инея удаляется за период стоянки компрессора. При большой тепловой нагрузке, когда продолжительность работы компрессора возрастает, период стоянки, необходимой для удаления инея, увеличивается, и температура в камере повышается до 7-8°С.

Учитывая, что при автоматическом поддержании температуры испарителя (или давления кипения) в пределах, обеспечивающих оттаивание инея за период стоянки, температура в камере может повыситься сверх допустимой, иногда применяют одновременно два реле температуры РТК и РТИ (рис.81, а). Реле РТК останавливает компрессор, когда в камере достигнута требуемая температура (например, 1°С). После остановки компрессора температура в камере повышается, и когда она достигнет 3°С, контакты РТК замкнутся (см. электросхему), но компрессор еще не включается, так как разомкнуты его блок-контакты МП-1. Когда температура испарителя достигнет 1°С, т.е. оттает снеговая шуба, контакты РТИ замкнутся и компрессор снова начнет работать.

При необходимости поддержания в объекте температуры ниже нуля применяют оттаивание горячим паром или дополнительным источником тепла.

Наиболее экономичны и эффективны схемы оттаивания горячим паром (рис.81, б, в, г). Во всех схемах горячий пар из компрессора направляется не в конденсатор, а непосредственно в испаритель. Там он, отдавая тепло, оттаивает снеговую шубу и конденсируется. Для превращения образующейся жидкости снова в пар, прежде чем она поступит в компрессор, применяют различные способы. В холодильных машинах для этой цели могут использоваться электронагреватели (рис.84, б). Программное реле ПрР примерно раз в сутки включает на 10-30 мин автоматическое оттаивание, открывается соленоидный вентиль СВ для подачи горячего пара в испаритель и включает электроподогрев, одновременно останавливая вентилятор. Программное реле ПрР включается вместе с пускателем компрессора МП (рис.81, б). Такая схема весьма целесообразна, так как при длительных остановках компрессора инея почти не образуется. РДН в этой схеме настроено на низкое давление (температуру), кипения и оттаивания инея после остановки компрессора не происходит.

Для превращения в пар жидкости, образующейся в испарителе, более целесообразно использовать тепло, которое отдает горячий пар, сжатый в компрессоре, охлаждающей среде в период нормальной работы (рис.81, б). В схему включают специальный аккумулятор Ак. При нормальной работе температура пара после сжатия в компрессоре 60-70°С (для фреона-12). Поступая в аккумулятор, эти пары доводят примерно до такой же температуры залитую в него жидкость. При работе в режиме оттаивания инея жидкий агент из испарителя попадает во внутренний сосуд аккумулятора, являющийся отделителем жидкости. Пары отсасываются компрессором, а жидкий холодильный агент, собравшийся снизу, подогревается жидкостью аккумулятора и превращается в пар.

На рис.81, г показана схема, в которой жидкий агент в период оттаивания из испарителя попадает в конденсатор, где превращается в пар, отбирая тепло от циркулирующей воды. Эту схему называют также реверсивной: в период оттаивания холодильная машина превращается в тепловой насос, который отводит тепло от окружающей среды (от воды конденсатора) и отдает его через испаритель охлаждаемой камере. Изменение направления потока жидкости и пара холодильного агента осуществляют четырехходовым краном, который по команде программного реле или дифференциального реле температуры поворачивается на 90°. Движение агента в период оттаивания показано на схеме пунктиром. Параллельно регулирующим вентилям 1РВ и 2РВ установлены обратные клапаны.

Все способы оттаивания горячим паром имеют одну особенность: оттаивание происходит настолько быстро, что вследствие тепловой инерции объекта температура в нем не успевает существенно подняться. Трубопровод подачи горячего пара следует прокладывать рядом со сливной трубкой и обогревать им поддон (рис.81, в), чтобы образующийся после удаления инея конденсат не замерзал в этих местах.

Широко применяют схемы с наружным обогревом испарителя, используя для этого ТЭНы (трубчатые электронагреватели), змеевики с подачей горячего пара или теплой воды, которой орошают охлаждающие батареи. Программное реле или другой датчик останавливает при этом компрессор и вентилятор, включая соответствующее обогревательное устройство. В рассольных батареях для удаления инея обычно используют рассол, подогреваемый в отдельном баке. Закрывают вентили подачи холодного рассола и открывают вентили подачи теплого рассола.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]