
- •Предисловие
- •Глава IX написана совместно с в.И. Канторовичем, главы XIX-XXII - при участии к.П. Венгер. Главы х и XXIV написаны а.М. Кореневым.
- •Термодинамический принцип машинного охлаждения
- •Холодопроизводительность и холодильный коэффициент компрессионной машины.
- •Идеальный цикл паровой Компрессионной холодильной машины
- •Глава II
- •Требования к холодильным агентам
- •Вещества, применяемые в качестве холодильных агентов
- •Характеристика холодильных агентов
- •Характеристика холодильных агентов
- •Азеотропные смеси
- •Хранение и перевозка холодильных агентов
- •Глава III
- •Цикл с переохлаждением холодильного агента
- •Цикл при работе компрессора сухим ходом
- •Теоретический цикл паровой компрессионной холодильной машины
- •Построение теоретического цикла паровой компрессионной холодильной машины в тепловых диаграммах
- •Расчет теоретического цикла паровой компрессионной холодильной машины
- •Глава IV
- •Теоретический процесс
- •Действительный процесс
- •Объемные потери в компрессоре
- •Энергетические потери
- •Потеря мощности на трение
- •Действительная холодопроизводительность компрессора
- •Сравнительная оценка производительности холодильных машин
- •Номинальные режимы работы
- •Мощность, потребляемая компрессором
- •Холодопроизводительность нетто и брутто
- •Глава V
- •Двухступенчатые холодильные маiiшны
- •Каскадные холодильные машины
- •Глава VI
- •Назначение и классификация компрессоров
- •Основные конструктивные узлы и детали поршневых компрессоров
- •Вертикальные и у-образные прямоточные компрессоры
- •Аммиачные прямоточные компрессоры
- •Фреоновые прямоточные компрессоры
- •Непрямоточные компрессоры Фреоновые непрямоточные компрессоры
- •Фреоновые открытые (сальниковые) компрессоры
- •Фреоновые бессальниковые компрессоры
- •Фреоновые герметичные компрессоры
- •Компрессоры для бытовых холодильников
- •Экранированные герметичные компрессоры
- •Горизонтальные крейцкопфные компрессоры двойного действия
- •Двухступенчатые компрессоры
- •Ротационные компрессоры
- •Смазочные масла для холодильных компрессоров
- •Глава VII
- •Конденсаторы
- •Кожухотрубные конденсаторы
- •Кожухозмеевиковые конденсаторы
- •Оросительные конденсаторы
- •Испарительные конденсаторы
- •Конденсаторы с воздушным охлаждением
- •Расчет конденсаторов
- •Устройства для охлаждения рециркуляционной воды
- •Переохладители и теплообменники
- •Испарители
- •Испарители для охлаждения жидких теплоносителей
- •Расчет испарителей для охлаждения жидких теплоносителей
- •Испарители для охлаждения воздуха
- •Глава VIII
- •Маслоотделители
- •Маслосборники
- •Фильтры
- •Осушители фреона
- •Отделители жидкости
- •Воздухоотделители
- •Ресиверы
- •Трубопроводы и их соединения
- •Запорные и регулирующие вентили
- •Глава IX
- •Общие сведения
- •Регулирование заполнения испарителя
- •Терморегулирующие вентили трв
- •Капиллярные трубки
- •Поплавковые регулирующие вентили
- •Соленоидные вентили
- •Регулирование постоянной температуры воздуха в камерах пуском и остановкой компрессора
- •Реле температуры
- •Реле давления
- •Многопозиционное регулирование температуры
- •Регулирование температуры в нескольких камерах
- •Регулирование давления конденсации
- •Автоматическое оттаивание инея с охлаждающих приборов
- •Автоматическая защита и сигнализация
- •Глава X
- •Задачи агрегатирования и типы агрегатов
- •Komпpeccopho-конденсаторные агрегаты
- •Аммиачные компрессорно-конденсаторные агрегаты средней холодопроизводительности
- •Фреоновые компрессорно-конденсаторные агрегаты средней холодопроизводительности
- •Фреоновые компрессорно-конденсаторные агрегаты с открытыми компрессорами
- •Агрегаты с бессальниковыми компрессорами
- •Агрегаты с герметичными компрессорами
- •Глава XI
- •Аммиачные холодильные машины средней производительности
- •Фреоновые холодильные машины средней производительности
- •Малые холодильные машины
- •Глава XII
- •Принцип действия и классификация абсорбционных машин
- •Абсорбционные машины непрерывного действия
- •Абсорбционно-диффузионные холодильные машины
- •Глава XIII
- •Типы и устройство холодильников
- •Тепловая изоляция холодильников
- •Гидроизоляционные материалы
- •Изоляционные конструкции холодильников
- •Изоляция холодильных аппаратов и трубопроводов
- •Расчет тепловой изоляции
- •Системы охлаждения холодильников
- •Непосредственное охлаждение
- •Рассольное охлаждение
- •Воздушное охлаждение
- •Расчет камерного холодильного оборудования
- •Глава XIV
- •Порядок проектирования
- •Определение числа холодильных камер и расчет их площадей
- •Планировка холодильника
- •Вентиляция холодильников
- •Определение расчетных параметров
- •Калорический расчет
- •Расчет и выбор холодильного оборудования
- •Поверочный тепловой расчет машины
- •Глава XV
- •Общие сведения
- •Сборные холодильные камеры
- •Торговые холодильные шкафы
- •Охлаждаемые витрины
- •Охлаждаемые прилавки
- •Техническая характеристика низкотемпературных прилавков
- •Охлаждаемые прилавки-витрины
- •Комплектное торговое холодильное оборудование таир
- •Глава XVI
- •Назначение и типы бытовых холодильников
- •Устройство бытовых холодильников
- •Охлаждающие агрегаты бытовых холодильников
- •Холодильники зил модели 63 и «север-6»
- •Глава XVII
- •Обслуживание холодильного оборудования
- •Глава XVIII
- •Ледяное охлаждение
- •Типы и устройство ледников
- •Расчет ледников
- •Льдосоляное охлаждение
- •Расчет установок льдосоляного охлаждения
- •Заготовка естественного льда
- •Искусственный водный лед в блоках
- •Искусственный водный лед других форм
- •Сухой лед
- •Основные методы консервирования пищевых продуктов
- •Консервирование пищевых продуктов холодом
- •Вспомогательные средства, применяемые при холодильном хранении пищевых продуктов
- •Ультрафиолетовые лучи
- •Ионизирующее облучение
- •Углекислота
- •Антибиотики
- •Антиокислители
- •Тара и упаковочные материалы
- •Глава XX
- •Физические и биохимические изменения в пищевых продуктах при охлаждении
- •Охлаждающие среды
- •Техника охлаждения пищевых продуктов Охлаждение мяса и субпродуктов
- •Влияние продолжительности охлаждения на усушку мяса
- •Охлаждение битой птицы
- •Охлаждение яиц
- •Охлаждение рыбы
- •Охлаждение молока и молочных продуктов
- •Охлаждение плодов и овощей
- •Глава XXI
- •Основные вопросы теории замораживания пищевых продуктов
- •Способы замораживания
- •Средства замораживания
- •Морозильные камеры
- •Скороморозильные аппараты
- •Техническая характеристика аппарата гкл-2
- •Техническая характеристика аппарата гка-4 (с 14 полками)
- •Техническая характеристика линии фмб-2 с одним мембранным аппаратом
- •Техника замораживания пищевых продуктов
- •Способы замораживания говяжьих полутуш
- •Глава XXII
- •Хранение продуктов на распределительных холодильниках
- •Усушка продуктов при холодильном хранении
- •Технология хранения отдельных видов пищевых продуктов
- •Хранение продуктов в холодильниках предприятий общественного питания и магазинов
- •Глава XXIII
- •Отепление продуктов
- •Размораживание продуктов
- •Размораживание и разогревание готовых блюд и кулинарных изделий
- •Глава XXIV
- •Железнодорожный холодильный транспорт
- •Автомобильный холодильный транспорт
- •Другие виды перевозок
- •Список использованной литературы
- •Оглавление
Регулирование заполнения испарителя
Заполнение сухих испарителей (с верхней подачей жидкого холодильного агента) может характеризоваться перегревом пара на выходе из испарителя:
,
где tвых - температура перегретого пара на выходе из испарителя, °С;
t0вых - температура кипения, соответствующая давлению пара на выходе из испарителя, °С.
В холодильных машинах без отделителя жидкости и без теплообменника нельзя поддерживать максимальный уровень в испарителе, поскольку из-за неточности регулирования возможен унос жидкого холодильного агента и попадание его в компрессор, что может привести к гидравлическому удару. Величина оптимального перегрева пара холодильного агента в таких схемах колеблется от 6 до 15°С. (Большее значение относится к работе при максимальных тепловых нагрузках). Если перегрев превышает указанные значения, то большая часть поверхности испарителя используется малоэффективно, а при меньших значениях перегрева капли жидкого холодильного агента могут уноситься в компрессор. В холодильных машинах с теплообменником перегрев пара, выходящего из испарителя, может быть равен нулю, так как попадание жидкого холодильного агента в теплообменник не снижает экономичность работы холодильной машины.
О заполнении испарителей затопленного типа можно судить не только по перегреву пара, но и по уровню жидкости. Однако этот параметр менее точно определяет заполнение, так как из-за вспенивания жидкости значительная часть поверхности над уровнем оказывается смоченной. Так, во фреоновых кожухотрубных испарителях полная смачиваемость теплообменной поверхности при интенсивной нагрузке достигается при уровне, примерно равном 30-40% высоты кожуха. При снижении тепловой нагрузки вспенивание уменьшается и поэтому необходимо поддерживать более высокий уровень. В аммиачных испарителях процесс кипения протекает менее интенсивно, и нормальной работе аппарата соответствует уровень, равный примерно 80% высоты кожуха.
В холодильной машине с капиллярной трубкой изменение заполнения испарителя вызывает изменение не только перегрева пара, но и других параметров. Снижение уровня в испарителе, вызванное увеличением тепловой нагрузки, приводит к увеличению уровня в конденсаторе вследствие отсутствия ресивера.
Переполнение конденсатора повышает давление конденсации, что, в свою очередь, вызывает увеличение подачи фреона через капиллярную трубку в испаритель, т.е. происходит самовыравнивание заполнения испарителя. Способность холодильной машины с капилляром к самовыравниванию позволяет обойтись здесь без автоматического регулятора заполнения испарителя. В большинстве холодильных машин после конденсатора устанавливают ресивер, чтобы иметь запас фреона на случай утечки. В этом случае изменение уровня в испарителе почти не отражается на давлении в конденсаторе. Степень самовыравнивания очень мала, и приходится регулировать заполнение испарителя.
Терморегулирующие вентили трв
ТРВ с внутренним выравниванием. Для регулирования заполнения испарителей в малых холодильных машинах чаще всего применяют терморегулирующие вентили (ТРВ). ТРВ поддерживает заданный перегрев паров холодильного агента, выходящего из испарителя. При увеличении перегрева, что говорит о недостаточном заполнении испарителя, клапан ТРВ автоматически открывается, увеличивая подачу холодильного агента. Рассмотрим подробнее, как изменение перегрева связано с перемещением клапана ТРВ (рис.65, а). Жидкий холодильный агент (например, фреон-12) из ресивера поступает в ТРВ. При проходе через кольцевое сечение между седлом и клапаном 5 давление фреона рк резко падает до давления р0, которое поддерживается в испарителе. При дросселировании часть жидкого фреона превращается в пар. При движении парожидкостной смеси по трубкам испарителя увеличивается количество пара, и в какой-то точке Б вся жидкость превратится в пар. На участке БВ пар перегревается. Пренебрегая сопротивлением в испарителе, можно считать, что давление пара на выходе из испарителя такое же, как и на входе (например, 1,86·155 Па). Тогда температура кипения (на участке АБ) также постоянная (-15°С). На выходе из испарителя (точка В) на трубе укреплен термопатрон Г, заполненный жидким фреоном-12. При повышении температуры давление насыщенного пара в нем растет и по капиллярной трубке 8 передается на мембрану 7. При температуре пара на выходе из испарителя -10°С давление в патроне равно 2,23·105 Па. Таким образом, перегреву пара в 5°С (от -15 до -10°С) соответствует разность давления 0,37·105 Па. Под давлением этой разности давлений мембрана 7 прогибается вниз и через толкатели 6 нажимает на иглодержатель 4, открывая клапан 5 до тех пор, пока усилие сжатой пружины 3 не уравновесит силу давления на мембрану.
Заданное начальное значение перегрева, обеспечивающее требуемое открытие клапана, устанавливается соответствующим натяжением пружины 3, При повороте винта 1 гайка 2 перемещается вверх по прорезям в корпусе, сжимает пружину 3 и перегрев паров холодильного агента увеличивается.
ТРВ с внешним выравниванием. При большом гидравлическом сопротивлении испарителя давление паров холодильного агента на выходе ниже, чем на входе. Температура кипения и температура перегретого пара на выходе также ниже, чем на входе. Давление в термопатроне снижается. Следовательно, тот же перегрев вызывает теперь меньшую разность давлений и клапан прикрывается. Обеспечить требуемое открытие клапана в этом случае можно только при увеличенном перегреве, т.е. при неполностью заполненном испарителе. Поэтому, когда гидравлическое сопротивление испарителя превышает 0,02 МПа, применяют ТРВ с внешней уравнительной трубкой (рис.65, б). Благодаря диафрагме 10 на мембрану снизу давит холодильный агент не со стороны входа (рА), а со стороны выхода холодильного агента из испарителя по уравнительной трубке 9. Поскольку давление пара холодильного агента на выходе из испарителя более низкое, чем на входе, разность давлений на мембрану при том же значении перегрева будет больше, чем в ТРВ на рис.65, а. Диафрагма позволяет также на выходе из ТРВ установить дополнительное постоянное дроссельное устройство 11. Это некоторое усложнение конструкции дает следующие преимущества:
Рис.65. Схема регулирования заполнения испарителя с помощью ТРВ:
а - с внутренним выравниванием: 1 - регулировочный винт, 2 - регулировочная гайка, 3 - регулировочная пружина, 4 - иглодержатель, 5 - регулирующая игла, 6 - толкатели, 7 - мембрана, 8 - капиллярная трубка. Г - термобаллон.
б - с внешним выравниванием: 1 - регулировочный винт, 2 - регулировочная гайка, 3 - регулировочная пружина, 4 - иглодержатель, 5 - регулирующая игла, 6 - толкатели, 7 -мембрана, 8 - капиллярная трубка, 9 - уравнительная трубка, 10 - перегородка, 11 - сужающее устройство, Г - термобаллон.
после клапана можно поддерживать повышенное давление (рпр), что позволяет разгрузить его и увеличить площадь проходного сечения;
поскольку перепад давлений на клапане уменьшается, то после клапана поддерживается повышенная температура холодильного агента, что уменьшает охлаждение всего прибора и предотвращает возможную конденсацию пара над мембраной.