
- •Предисловие
- •Глава IX написана совместно с в.И. Канторовичем, главы XIX-XXII - при участии к.П. Венгер. Главы х и XXIV написаны а.М. Кореневым.
- •Термодинамический принцип машинного охлаждения
- •Холодопроизводительность и холодильный коэффициент компрессионной машины.
- •Идеальный цикл паровой Компрессионной холодильной машины
- •Глава II
- •Требования к холодильным агентам
- •Вещества, применяемые в качестве холодильных агентов
- •Характеристика холодильных агентов
- •Характеристика холодильных агентов
- •Азеотропные смеси
- •Хранение и перевозка холодильных агентов
- •Глава III
- •Цикл с переохлаждением холодильного агента
- •Цикл при работе компрессора сухим ходом
- •Теоретический цикл паровой компрессионной холодильной машины
- •Построение теоретического цикла паровой компрессионной холодильной машины в тепловых диаграммах
- •Расчет теоретического цикла паровой компрессионной холодильной машины
- •Глава IV
- •Теоретический процесс
- •Действительный процесс
- •Объемные потери в компрессоре
- •Энергетические потери
- •Потеря мощности на трение
- •Действительная холодопроизводительность компрессора
- •Сравнительная оценка производительности холодильных машин
- •Номинальные режимы работы
- •Мощность, потребляемая компрессором
- •Холодопроизводительность нетто и брутто
- •Глава V
- •Двухступенчатые холодильные маiiшны
- •Каскадные холодильные машины
- •Глава VI
- •Назначение и классификация компрессоров
- •Основные конструктивные узлы и детали поршневых компрессоров
- •Вертикальные и у-образные прямоточные компрессоры
- •Аммиачные прямоточные компрессоры
- •Фреоновые прямоточные компрессоры
- •Непрямоточные компрессоры Фреоновые непрямоточные компрессоры
- •Фреоновые открытые (сальниковые) компрессоры
- •Фреоновые бессальниковые компрессоры
- •Фреоновые герметичные компрессоры
- •Компрессоры для бытовых холодильников
- •Экранированные герметичные компрессоры
- •Горизонтальные крейцкопфные компрессоры двойного действия
- •Двухступенчатые компрессоры
- •Ротационные компрессоры
- •Смазочные масла для холодильных компрессоров
- •Глава VII
- •Конденсаторы
- •Кожухотрубные конденсаторы
- •Кожухозмеевиковые конденсаторы
- •Оросительные конденсаторы
- •Испарительные конденсаторы
- •Конденсаторы с воздушным охлаждением
- •Расчет конденсаторов
- •Устройства для охлаждения рециркуляционной воды
- •Переохладители и теплообменники
- •Испарители
- •Испарители для охлаждения жидких теплоносителей
- •Расчет испарителей для охлаждения жидких теплоносителей
- •Испарители для охлаждения воздуха
- •Глава VIII
- •Маслоотделители
- •Маслосборники
- •Фильтры
- •Осушители фреона
- •Отделители жидкости
- •Воздухоотделители
- •Ресиверы
- •Трубопроводы и их соединения
- •Запорные и регулирующие вентили
- •Глава IX
- •Общие сведения
- •Регулирование заполнения испарителя
- •Терморегулирующие вентили трв
- •Капиллярные трубки
- •Поплавковые регулирующие вентили
- •Соленоидные вентили
- •Регулирование постоянной температуры воздуха в камерах пуском и остановкой компрессора
- •Реле температуры
- •Реле давления
- •Многопозиционное регулирование температуры
- •Регулирование температуры в нескольких камерах
- •Регулирование давления конденсации
- •Автоматическое оттаивание инея с охлаждающих приборов
- •Автоматическая защита и сигнализация
- •Глава X
- •Задачи агрегатирования и типы агрегатов
- •Komпpeccopho-конденсаторные агрегаты
- •Аммиачные компрессорно-конденсаторные агрегаты средней холодопроизводительности
- •Фреоновые компрессорно-конденсаторные агрегаты средней холодопроизводительности
- •Фреоновые компрессорно-конденсаторные агрегаты с открытыми компрессорами
- •Агрегаты с бессальниковыми компрессорами
- •Агрегаты с герметичными компрессорами
- •Глава XI
- •Аммиачные холодильные машины средней производительности
- •Фреоновые холодильные машины средней производительности
- •Малые холодильные машины
- •Глава XII
- •Принцип действия и классификация абсорбционных машин
- •Абсорбционные машины непрерывного действия
- •Абсорбционно-диффузионные холодильные машины
- •Глава XIII
- •Типы и устройство холодильников
- •Тепловая изоляция холодильников
- •Гидроизоляционные материалы
- •Изоляционные конструкции холодильников
- •Изоляция холодильных аппаратов и трубопроводов
- •Расчет тепловой изоляции
- •Системы охлаждения холодильников
- •Непосредственное охлаждение
- •Рассольное охлаждение
- •Воздушное охлаждение
- •Расчет камерного холодильного оборудования
- •Глава XIV
- •Порядок проектирования
- •Определение числа холодильных камер и расчет их площадей
- •Планировка холодильника
- •Вентиляция холодильников
- •Определение расчетных параметров
- •Калорический расчет
- •Расчет и выбор холодильного оборудования
- •Поверочный тепловой расчет машины
- •Глава XV
- •Общие сведения
- •Сборные холодильные камеры
- •Торговые холодильные шкафы
- •Охлаждаемые витрины
- •Охлаждаемые прилавки
- •Техническая характеристика низкотемпературных прилавков
- •Охлаждаемые прилавки-витрины
- •Комплектное торговое холодильное оборудование таир
- •Глава XVI
- •Назначение и типы бытовых холодильников
- •Устройство бытовых холодильников
- •Охлаждающие агрегаты бытовых холодильников
- •Холодильники зил модели 63 и «север-6»
- •Глава XVII
- •Обслуживание холодильного оборудования
- •Глава XVIII
- •Ледяное охлаждение
- •Типы и устройство ледников
- •Расчет ледников
- •Льдосоляное охлаждение
- •Расчет установок льдосоляного охлаждения
- •Заготовка естественного льда
- •Искусственный водный лед в блоках
- •Искусственный водный лед других форм
- •Сухой лед
- •Основные методы консервирования пищевых продуктов
- •Консервирование пищевых продуктов холодом
- •Вспомогательные средства, применяемые при холодильном хранении пищевых продуктов
- •Ультрафиолетовые лучи
- •Ионизирующее облучение
- •Углекислота
- •Антибиотики
- •Антиокислители
- •Тара и упаковочные материалы
- •Глава XX
- •Физические и биохимические изменения в пищевых продуктах при охлаждении
- •Охлаждающие среды
- •Техника охлаждения пищевых продуктов Охлаждение мяса и субпродуктов
- •Влияние продолжительности охлаждения на усушку мяса
- •Охлаждение битой птицы
- •Охлаждение яиц
- •Охлаждение рыбы
- •Охлаждение молока и молочных продуктов
- •Охлаждение плодов и овощей
- •Глава XXI
- •Основные вопросы теории замораживания пищевых продуктов
- •Способы замораживания
- •Средства замораживания
- •Морозильные камеры
- •Скороморозильные аппараты
- •Техническая характеристика аппарата гкл-2
- •Техническая характеристика аппарата гка-4 (с 14 полками)
- •Техническая характеристика линии фмб-2 с одним мембранным аппаратом
- •Техника замораживания пищевых продуктов
- •Способы замораживания говяжьих полутуш
- •Глава XXII
- •Хранение продуктов на распределительных холодильниках
- •Усушка продуктов при холодильном хранении
- •Технология хранения отдельных видов пищевых продуктов
- •Хранение продуктов в холодильниках предприятий общественного питания и магазинов
- •Глава XXIII
- •Отепление продуктов
- •Размораживание продуктов
- •Размораживание и разогревание готовых блюд и кулинарных изделий
- •Глава XXIV
- •Железнодорожный холодильный транспорт
- •Автомобильный холодильный транспорт
- •Другие виды перевозок
- •Список использованной литературы
- •Оглавление
Термодинамический принцип машинного охлаждения
Е
стественным
путем тепло переходит только от тел с
высокой температурой к телам с более
низкой температурой. При машинном
охлаждении требуется отводить тепло
от охлаждаемой среды и передавать его
более теплой среде, например, окружающему
воздуху или водопроводной воде.
Согласно второму закону термодинамики тепло может быть перенесено из холодной среды в теплую путем затраты извне механической или тепловой энергии. Для этого осуществляют специальные термодинамические циклы, называемые холодильными циклами. В холодильных циклах тепло переносится с нижнего температурного уровня на более высокий с помощью какого-либо тела. Такие тела называют рабочими веществами.
Простейший из холодильных циклов в v, p-координатах показан на рис.1. В процессе 1-a-2 этого цикла рабочее тело расширяется, а в процессе 2-b-1 сжимается. Расширение протекает при температуре более низкой, чем температура окружающей среды, поэтому последняя охлаждается, а рабочее тело нагревается; сжимается рабочее тело при более высокой температуре и во время сжатия тепло отводится в окружающую среду - в воздух или воду. На осуществление цикла расходуется внешняя механическая работа, которая в v, p-диаграмме изображается площадью, ограниченной процессами, образующими цикл. Тепло, эквивалентное этой работе, воспринимается рабочим телом и передается им вместе с теплом, воспринятым от охлаждаемой среды, в окружающую (более теплую) среду. Если в рассмотренном цикле рабочее тело воспринимает от охлаждаемой среды q0 тепла, а на сжатие того же количества рабочего тела расходуется l работы, то в окружающую среду согласно закону сохранения энергии от него должно отводиться тепло в количестве q=q0+l. В действительности циклы холодильных машин значительно сложнее, чем рассмотренный.
Комплекс технических устройств, с помощью которых осуществляется холодильный цикл, называется холодильной машиной.
Рабочим телом холодильных циклов могут служить различные вещества. По своему физическому состоянию эти вещества во время сжатия могут быть в виде газа или пара. В связи с этим холодильные машины делят на газовые и паровые.
В газовых холодильных машинах рабочее тело на протяжении всего цикла не изменяет своего агрегатного состояния. В паровых холодильных машинах оно переходит в отдельных процессах цикла из парообразного состояния в жидкое или, наоборот - из жидкого в парообразное.
Из газообразных веществ в качестве рабочего тела в холодильных машинах применяют только воздух. Поэтому практически газовыми холодильными машинами являются воздушные холодильные машины.
Принцип охлаждения воздушными холодильными машинами. Схема воздушной холодильной машины дана на рис.2. Основными ее элементами являются компрессор 1, охладитель 2 и расширительный цилиндр 3. Посредством воздушных каналов машина соединяется с охлаждаемым помещением 4.
Компрессор 1 засасывает воздух из охлаждаемого помещения 4 при давлении p0, равном приблизительно атмосферному давлению, и сжимает его адиабатически до давления p, поддерживаемого в охладителе 2. Практически это давление составляет примерно 0,4-0,5 МПа. Температура воздуха вследствие такого сжатия достигает 100-120°С. Из компрессора сжатый воздух направляется в охладитель 2. Здесь он охлаждается примерно до 20°С - температуры, близкой к температуре охлаждающей воды. При этом давление p благодаря работе компрессора поддерживается постоянным. Из охладителя воздух поступает в расширительный цилиндр - детандер 3, в котором адиабатически расширяется до первоначального давления p0, вследствие чего его температура снижается до -75÷-70°С. Затем он подается в охлаждаемое помещение 4, охлаждает его, а сам нагревается до -10÷-5°С. Отсюда опять засасывается в компрессор, сжимается в нем, и цикл повторяется снова.
Рис.2. Схема воздушной холодильной машины:
1 - компрессор; 2 - охладитель; 3 - расширительный цилиндр; 4 - охлаждаемое помещение.
Воздух как рабочее вещество обладает следующими преимуществами: имеется везде в неограниченном количестве, безвреден для человека, безопасен в пожарном отношении, достаточно нейтрален к металлам и смазывающим средствам. Однако воздушные холодильные машины большого практического применения не нашли. Основные их недостатки: громоздкость вследствие чрезвычайно малой теплоемкости воздуха; низкий механический коэффициент полезного действия; оседание влаги в виде снега в расширительном цилиндре при большом понижении температуры.
Воздушные холодильные машины используют главным образом для специальных целей, например кондиционирования воздуха в самолетах, разделения газов в установках глубокого охлаждения и т.д.
Принцип охлаждения паровыми холодильными машинами. Паровые холодильные машины, как и воздушные, работают по принципу переноса тепла из холодной среды в теплую путем затраты энергии. Однако в паровых холодильных машинах восприятие тепла в охлаждаемом помещении происходит не вследствие нагревания рабочего вещества, а в результате его кипения. Отводится тепло от рабочего вещества при его конденсации.
Для охлаждения посредством паровой холодильной машины той или иной среды в ней устанавливают змеевики или другую систему металлических труб. Такая система называется испарителем, в нее подается в жидком виде рабочее вещество, которое здесь кипит и охлаждает окружающую среду.
Охлаждение должно осуществляться при достаточно низких температурах. Для этого кипение рабочего вещества должно протекать тоже при низких температурах. Температуры кипения и конденсации рабочего вещества зависят от давления его паров. С понижением давления паров понижаются температуры кипения и конденсация рабочего вещества, и наоборот. В связи с этим при работе холодильной машины давление над кипящим рабочим веществом всегда поддерживают в соответствии с необходимой температурой кипения, которая определяется температурой охлаждаемой среды. Достигается это отсасыванием паров рабочего вещества из испарителя.
Средой, в которую передается тепло при работе холодильной машины, служит обычно вода или воздух. Пары рабочего вещества, образующиеся в испарителе, имеют более низкую температуру, чем охлаждающая вода или воздух, так как процесс в нем чаще всего ведется при отрицательных температурах. В установках умеренно низких температур в испарителе температура кипения рабочего вещества поддерживается в среднем от -10 до -20°С. Поэтому тепло не может переходить непосредственно от рабочего вещества к более теплой воде или воздуху. Но если повысить давление паров, то повысится и температура их конденсации. С этой целью давление отсасываемых из испарителя паров рабочего вещества повышают до величины, при которой температура конденсации их примерно на 10°С выше средней температуры воды или воздуха, воспринимающих тепло. Повышение давления паров, как и отсасывание их из испарителя, в различных системах машин осуществляется по-разному, но всегда с затратой механической или тепловой энергии.
Пары рабочего вещества после повышения их давления во всех системах холодильных машин направляются в конденсатор, в котором, как и в испарителе, основной рабочей частью является система металлических труб. Здесь рабочее вещество отдает воспринятое им тепло охлаждающей воде или воздуху и конденсируется. Из конденсатора жидкое рабочее вещество снова подается в испаритель для поглощения нового количества тепла из охлаждаемой среды.
Давление выходящего из конденсатора жидкого рабочего вещества должно быть таким же, как и его паров, поступающих в этот аппарат, так как давление конденсации при работе машины поддерживается постоянным. В испарителе давление должно быть намного ниже. Поэтому при переходе жидкого рабочего вещества из конденсатора в испаритель давление его понижается с помощью дросселирующего устройства.
В испарителе рабочее вещество снова переходит в парообразное состояние при низкой температуре и низком давлении.
По такому принципу работают все современные паровые холодильные машины. Но практические методы и средства осуществления этого принципа различны, а, следовательно, разнообразны и типы машин. Их, прежде всего, делят в зависимости от способов отсасывания рабочего вещества из испарителя и нагнетания его в конденсатор. По этому признаку различают машины: компрессионные и абсорбционные.