
- •Предисловие
- •Глава IX написана совместно с в.И. Канторовичем, главы XIX-XXII - при участии к.П. Венгер. Главы х и XXIV написаны а.М. Кореневым.
- •Термодинамический принцип машинного охлаждения
- •Холодопроизводительность и холодильный коэффициент компрессионной машины.
- •Идеальный цикл паровой Компрессионной холодильной машины
- •Глава II
- •Требования к холодильным агентам
- •Вещества, применяемые в качестве холодильных агентов
- •Характеристика холодильных агентов
- •Характеристика холодильных агентов
- •Азеотропные смеси
- •Хранение и перевозка холодильных агентов
- •Глава III
- •Цикл с переохлаждением холодильного агента
- •Цикл при работе компрессора сухим ходом
- •Теоретический цикл паровой компрессионной холодильной машины
- •Построение теоретического цикла паровой компрессионной холодильной машины в тепловых диаграммах
- •Расчет теоретического цикла паровой компрессионной холодильной машины
- •Глава IV
- •Теоретический процесс
- •Действительный процесс
- •Объемные потери в компрессоре
- •Энергетические потери
- •Потеря мощности на трение
- •Действительная холодопроизводительность компрессора
- •Сравнительная оценка производительности холодильных машин
- •Номинальные режимы работы
- •Мощность, потребляемая компрессором
- •Холодопроизводительность нетто и брутто
- •Глава V
- •Двухступенчатые холодильные маiiшны
- •Каскадные холодильные машины
- •Глава VI
- •Назначение и классификация компрессоров
- •Основные конструктивные узлы и детали поршневых компрессоров
- •Вертикальные и у-образные прямоточные компрессоры
- •Аммиачные прямоточные компрессоры
- •Фреоновые прямоточные компрессоры
- •Непрямоточные компрессоры Фреоновые непрямоточные компрессоры
- •Фреоновые открытые (сальниковые) компрессоры
- •Фреоновые бессальниковые компрессоры
- •Фреоновые герметичные компрессоры
- •Компрессоры для бытовых холодильников
- •Экранированные герметичные компрессоры
- •Горизонтальные крейцкопфные компрессоры двойного действия
- •Двухступенчатые компрессоры
- •Ротационные компрессоры
- •Смазочные масла для холодильных компрессоров
- •Глава VII
- •Конденсаторы
- •Кожухотрубные конденсаторы
- •Кожухозмеевиковые конденсаторы
- •Оросительные конденсаторы
- •Испарительные конденсаторы
- •Конденсаторы с воздушным охлаждением
- •Расчет конденсаторов
- •Устройства для охлаждения рециркуляционной воды
- •Переохладители и теплообменники
- •Испарители
- •Испарители для охлаждения жидких теплоносителей
- •Расчет испарителей для охлаждения жидких теплоносителей
- •Испарители для охлаждения воздуха
- •Глава VIII
- •Маслоотделители
- •Маслосборники
- •Фильтры
- •Осушители фреона
- •Отделители жидкости
- •Воздухоотделители
- •Ресиверы
- •Трубопроводы и их соединения
- •Запорные и регулирующие вентили
- •Глава IX
- •Общие сведения
- •Регулирование заполнения испарителя
- •Терморегулирующие вентили трв
- •Капиллярные трубки
- •Поплавковые регулирующие вентили
- •Соленоидные вентили
- •Регулирование постоянной температуры воздуха в камерах пуском и остановкой компрессора
- •Реле температуры
- •Реле давления
- •Многопозиционное регулирование температуры
- •Регулирование температуры в нескольких камерах
- •Регулирование давления конденсации
- •Автоматическое оттаивание инея с охлаждающих приборов
- •Автоматическая защита и сигнализация
- •Глава X
- •Задачи агрегатирования и типы агрегатов
- •Komпpeccopho-конденсаторные агрегаты
- •Аммиачные компрессорно-конденсаторные агрегаты средней холодопроизводительности
- •Фреоновые компрессорно-конденсаторные агрегаты средней холодопроизводительности
- •Фреоновые компрессорно-конденсаторные агрегаты с открытыми компрессорами
- •Агрегаты с бессальниковыми компрессорами
- •Агрегаты с герметичными компрессорами
- •Глава XI
- •Аммиачные холодильные машины средней производительности
- •Фреоновые холодильные машины средней производительности
- •Малые холодильные машины
- •Глава XII
- •Принцип действия и классификация абсорбционных машин
- •Абсорбционные машины непрерывного действия
- •Абсорбционно-диффузионные холодильные машины
- •Глава XIII
- •Типы и устройство холодильников
- •Тепловая изоляция холодильников
- •Гидроизоляционные материалы
- •Изоляционные конструкции холодильников
- •Изоляция холодильных аппаратов и трубопроводов
- •Расчет тепловой изоляции
- •Системы охлаждения холодильников
- •Непосредственное охлаждение
- •Рассольное охлаждение
- •Воздушное охлаждение
- •Расчет камерного холодильного оборудования
- •Глава XIV
- •Порядок проектирования
- •Определение числа холодильных камер и расчет их площадей
- •Планировка холодильника
- •Вентиляция холодильников
- •Определение расчетных параметров
- •Калорический расчет
- •Расчет и выбор холодильного оборудования
- •Поверочный тепловой расчет машины
- •Глава XV
- •Общие сведения
- •Сборные холодильные камеры
- •Торговые холодильные шкафы
- •Охлаждаемые витрины
- •Охлаждаемые прилавки
- •Техническая характеристика низкотемпературных прилавков
- •Охлаждаемые прилавки-витрины
- •Комплектное торговое холодильное оборудование таир
- •Глава XVI
- •Назначение и типы бытовых холодильников
- •Устройство бытовых холодильников
- •Охлаждающие агрегаты бытовых холодильников
- •Холодильники зил модели 63 и «север-6»
- •Глава XVII
- •Обслуживание холодильного оборудования
- •Глава XVIII
- •Ледяное охлаждение
- •Типы и устройство ледников
- •Расчет ледников
- •Льдосоляное охлаждение
- •Расчет установок льдосоляного охлаждения
- •Заготовка естественного льда
- •Искусственный водный лед в блоках
- •Искусственный водный лед других форм
- •Сухой лед
- •Основные методы консервирования пищевых продуктов
- •Консервирование пищевых продуктов холодом
- •Вспомогательные средства, применяемые при холодильном хранении пищевых продуктов
- •Ультрафиолетовые лучи
- •Ионизирующее облучение
- •Углекислота
- •Антибиотики
- •Антиокислители
- •Тара и упаковочные материалы
- •Глава XX
- •Физические и биохимические изменения в пищевых продуктах при охлаждении
- •Охлаждающие среды
- •Техника охлаждения пищевых продуктов Охлаждение мяса и субпродуктов
- •Влияние продолжительности охлаждения на усушку мяса
- •Охлаждение битой птицы
- •Охлаждение яиц
- •Охлаждение рыбы
- •Охлаждение молока и молочных продуктов
- •Охлаждение плодов и овощей
- •Глава XXI
- •Основные вопросы теории замораживания пищевых продуктов
- •Способы замораживания
- •Средства замораживания
- •Морозильные камеры
- •Скороморозильные аппараты
- •Техническая характеристика аппарата гкл-2
- •Техническая характеристика аппарата гка-4 (с 14 полками)
- •Техническая характеристика линии фмб-2 с одним мембранным аппаратом
- •Техника замораживания пищевых продуктов
- •Способы замораживания говяжьих полутуш
- •Глава XXII
- •Хранение продуктов на распределительных холодильниках
- •Усушка продуктов при холодильном хранении
- •Технология хранения отдельных видов пищевых продуктов
- •Хранение продуктов в холодильниках предприятий общественного питания и магазинов
- •Глава XXIII
- •Отепление продуктов
- •Размораживание продуктов
- •Размораживание и разогревание готовых блюд и кулинарных изделий
- •Глава XXIV
- •Железнодорожный холодильный транспорт
- •Автомобильный холодильный транспорт
- •Другие виды перевозок
- •Список использованной литературы
- •Оглавление
Глава IV
ПРОЦЕССЫ В ЦИЛИНДРЕ ПАРОВОГО ПОРШНЕВОГО КОМПРЕССОРА
Теоретический процесс
П
ри
рассмотрении теоретического процесса
в цилиндре компрессора и построении
его индикаторной диаграммы (рис.11)
принимают, что с началом движения поршня
из левого крайнего положения вправо
открывается всасывающий клапан и
холодильный агент всасывается в цилиндр.
Всасывание (линия а-1) происходит при
постоянном давлении p0,
равном давлению в испарителе, из которого
засасывается холодильный агент, и
заканчивается, когда поршень достигает
своего крайнего правого положения.
Всасывающий клапан при этом закрывается.
В процессе всасывания паров холодильного
агента в цилиндр компрессора остается
постоянным не только их давление, но
также температура и удельный объем. При
обратном движении поршня - справа налево
- в цилиндре происходит адиабатическое
сжатие (линия 1-2) холодильного агента.
Он сжимается до давления p,
равного давлению в конденсаторе. При
этом давлении открывается нагнетательный
клапан, через который пары холодильного
агента при дальнейшем движении поршня
влево вытесняются из цилиндра (линия
2-b). Этот процесс протекает
при постоянном давлении p,
равном давлению в конденсаторе.
Принимают также, что, когда поршень достигнет крайнего левого положения, между ним и крышкой цилиндра не остается пространства и, следовательно, весь холодильный агент при этом вытесняется из цилиндра.
Если обозначить объем, описываемый поршнями компрессора через Vc, а удельную объемную холодопроизводительность холодильного агента, соответствующую его состоянию при всасывании в компрессор, через qv, то теоретическая холодопроизводительность машины будет определяться по формуле:
.
(14)
Действительная же холодопроизводительность машины значительно меньше.
Действительный процесс
Действительные процессы, протекающие в компрессоре, в отличие от теоретических сопровождаются рядом потерь, вызываемых сопротивлением в клапанах, теплообменом между паром и стенками цилиндра, наличием вредного пространства в цилиндре, трением и другими причинами. В компрессорах различают объемные и энергетические потери.
Объемные потери в компрессоре
В
действительном компрессоре поступление
паров холодильного агента в рабочую
полость цилиндра начинается не с начала
хода всасывания, а несколько позже.
Происходит это из-за того, что во вредном
пространстве цилиндра после нагнетания
остается часть сжатых паров холодильного
агента. Пока эти пары не расширятся во
время следующего хода поршня до давления
всасывания, всасывающий клапан не
откроется и процесс всасывания не
начнется.
На рис.12 показана действительная индикаторная диаграмма компрессора, на которой процесс расширения холодильного агента из вредного пространства изображен кривой d-a, представляющей собой политропу.
Точка a на диаграмме соответствует моменту открытия всасывающего клапана компрессора и началу процесса всасывания. Весь процесс всасывания изображается линией a-b, расположенной ниже линии p0 на величину ∆p0 вследствие сопротивлений во всасывающем трубопроводе, клапанах и каналах.
Точка b характеризует конец процесса всасывания и начало процесса сжатия. Сжимается холодильный агент по политропе b-c до давления, превышающего давление конденсации p на величину ∆p, равную гидравлическому сопротивлению в каналах, клапанах и нагнетательном трубопроводе. Точка c соответствует моменту открытия нагнетательного клапана. Линия c-d изображает процесс нагнетания.
Точка d показывает момент окончания процесса нагнетания и начало процесса расширения пара, оставшегося во вредном пространстве, т.е. момент, когда поршень занимает крайнее (в данном случае левое) положение.
Отрезок Vh пропорционален рабочему объему цилиндра, а отрезок V0 - объему вредного его пространства. Отрезок C1 пропорционален той части рабочего объема цилиндра, которая теряется из-за наличия вредного пространства, а отрезок C2 - рабочего объема цилиндра, которая теряется из-за гидравлического сопротивления на стороне всасывания.
Величина объемных потерь, обусловленных
наличием вредного пространства, зависит
от его объема и отношения давлений
и
учитывается коэффициентом λc,
представляющим собой отношение объема
V1 к объему Vh‚
т.е.
.
Размер отрезка C2 зависит от величины сопротивлений на стороне всасывания компрессора. Сопротивления, в свою очередь, определяются конструкцией машины, условиями ее эксплуатации и свойствами холодильного агента. Этот вид объемных потерь учитывают при помощи коэффициента дросселирования λдр, представляющего собой отношение V2 к V1, то есть
.
Практически коэффициент дросселирования близок к единице.
Помимо указанных на индикаторной диаграмме объемных потерь в действительной работе компрессора всегда имеются объемные потери от теплообмена между стенками цилиндра и паром холодильного агента.
Интенсивность теплообмена больше при засасывании в компрессор влажного пара, чем сухого. Кроме того, она зависит от отношения давлений и частоты вращения вала машины. Чем меньше это отношение и быстроходнее машина, тем меньше теплообмен в ее цилиндре.
Теплообмен в цилиндре компрессора влияет на процессы сжатия и расширения. Объемные потери от наличия теплообмена учитываются коэффициентом подогрева λп, который представляет собой отношение количества холодильного агента, действительно засасываемого в цилиндр, к количеству холодильного агента, которое компрессор мог бы засосать за то же время при отсутствии в цилиндре теплообмена. Так как при наличии теплообмена в цилиндре компрессора масса засасываемого холодильного агента уменьшается вследствие увеличения его удельного объема, то коэффициент подогрева можно выразить и как отношение удельных объемов паров холодильного агента в начале и в конце процесса всасывания.
В действительном компрессоре имеется еще один вид объемных потерь - потери через неплотности. Во время эксплуатации машины трудно добиться абсолютной плотности в клапанах и поршневом уплотнении, через которые вследствие разности давлений в разделяемых ими пространствах происходят утечки паров холодильного агента из рабочей полости цилиндра. Эти потери учитываются коэффициентом плотности λпл, выражающим отношение количества холодильного агента, действительно подаваемого компрессором из испарителя в конденсатор, к количеству холодильного агента, которое он мог бы подать за то же время при абсолютном отсутствии в нем неплотностей.
Все объемные потери, имеющиеся в действительной работе компрессора, учитываются коэффициентом подачи λ. Коэффициентом подачи компрессора называется отношение действительно подаваемой им массы холодильного агента М к массе Мтеор, которую он мог бы подать за то же время при отсутствии всех объемных потерь.
,
(15)
где М - действительная массовая производительность компрессора, кг/с;
Мтеор - теоретическая массовая производительность компрессора при отсутствии в нем всех объемных потерь, кг/с;
Vc - объем, описываемый поршнями компрессора, м3/с;
v1 - удельный объем паров холодильного агента на всасывании в компрессор, м3/кг;
V - действительная объемная производительность компрессора, соответствующая условиям всасывания, м3/с.
Поскольку коэффициент подачи отражает все объемные потери в компрессоре, он может быть выражен как произведение коэффициентов, учитывающих отдельные виды объемных потерь, а именно
.
(16)
Все условия, от которых зависят эти коэффициенты, влияют на коэффициент подачи. Значения коэффициентов подачи приводятся обычно в графиках для компрессоров различных типов в зависимости от отношения давлений (рис.13).
Р
ис.13.
График коэффициентов подачи λ и
индикаторных к.п.д. ηi:
а - для компрессоров на фреоне-12; б - для аммиачных бескрейцкопфных (1 - для средних компрессоров, 2 - для крупных компрессоров); в - для средних компрессоров на фреоне-22; г - для крейцкопфных компрессоров.