
- •Статистика Конспект лекций
- •Часть I. Теория статистики
- •Глава 1. Предмет и метод статистики
- •1.1. Предмет, метод и основные категории статистики как науки
- •1.2. Органы государственной статистики Российской Федерации
- •Глава 2. Статистическое наблюдение
- •2.1. Основные этапы статистического исследования
- •2.2. Статистическое наблюдение — первый этап статистического исследования
- •2.3. Программно-методологические и организационные вопросы статистического наблюдения
- •2.4. Формы, виды и способы наблюдения
- •2.5. Понятие выборочного наблюдения, отбор единиц в выборочную совокупность
- •2.6. Определение ошибок выборки*
- •2.7. Определение численности выборки
- •2.8. Распространение выборочных результатов
- •Глава 3. Сводка и группировка данньк статистического наблюдения
- •3.1. Сводка статистических данных
- •3.2. Группировка статистических данных
- •3.3. Многомерные группировки в статистике
- •3.4. Статистические таблицы
- •3.5. Статистические графики
- •35 % 61 % 4% [Активы, свободные от риска ! Активы с минимальным риском Активы с повышенным риском
- •Глава 4. Статистические величины
- •4.1. Понятие абсолютной и относительной величины в статистике
- •4.2. Виды и взаимосвязи относительных величин
- •2. Относительная величина планового задания.
- •4.3. Средние величины. Общие принципы их применения
- •4.4. Расчет средней через показатели структуры
- •3.'Средний уровень оплаты труда (f):
- •4. Средний уровень фондоотдачи (н):
- •4.5. Расчет средних по результатам группировки. Свойства средней арифметической
- •4.6. Структурные средние
- •4.7 Показатели вариации
- •Глава 5. Изучение динамики общественных явлений
- •5.1. Ряды динамики. Классификация
- •5.2. Правила построения рядов динамики
- •5.3. Показатели анализа рядов динамики
- •5.4. Структура ряда динамики. Проверка ряда на наличие тренда
- •5.5. Анализ сезонных колебаний
- •5.6. Анализ взаимосвязанных рядов динамики
- •Глава 6. Индексы
- •6.1. Индивидуальные индексы и их применение в экономическом анализе
- •6.2. Общие индексы и их применение в анализе
- •6.3. Общие индексы как средние из индивидуальных индексов
- •6.5. Индексы при анализе структурных изменений
- •6.6. Индексы средних величин
- •6.7. Территориальные индексы
- •Глава 7. Статистическое изучение взаимосвязей
- •7.1. Основные понятия корреляционного и регрессионного анализа
- •7.2. Парная корреляция и парная линейная регрессия
- •Ireop u 1 I
- •7.3. Множественная линейная регрессия
- •7.4. Нелинейная регрессия. Коэффициенты эластичности
- •7.5. Множественная корреляция
- •7.6. Оценка значимости параметров взаимосвязи
- •7.7. Непараметрические методы оценки связи
5.6. Анализ взаимосвязанных рядов динамики
Под взаимосвязанными рядами динамики понимают такие, в которых уровни одного ряда в какой-то" степени определяют уровни другого. Например, ряд, отражающий внесение удобрений на 1 га, связан с временным рядом урожайности, ряд уровней средней выработки связан с рядом динамики средней заработной платы, ряд среднегодового поголовья молочного стада определяет годовые уровни надоев молока и т. д.
В простейших случаях для характеристики взаимосвязи двух и более рядов их приводят к общему основанию, для чего берут в качестве базисных уровни за один и тот же период и исчисляют коэффициенты опережения по темпам роста или прироста.
Коэффициенты опережения по темпам роста — это отношение темпов роста (цепных или базисных) одного ряда к соответствующим по времени темпам роста (также цепным или базисным) другого ряда. Аналогично находятся и коэффициенты опережения по темпам прироста.
Анализ взаимосвязанных рядов представляет наибольшую сложность при изучении временных последовательностей. Нередко совпадение общих тенденций развития бывает вызвано не взаимной связью, а прочими неучитываемыми факторами. Поэтому в сопоставляемых рядах предварительно следует избавиться от влияния существующих в них тенденций, а после этого провести анализ взаимосвязи по отклонениям от тренда. Исследование включает проверку рядов динамики (отклонений) на автокорреляцию и установление взаимосвязи между признаками.
Под автокорреляцией понимается зависимость последующих уровней ряда от предыдущих. Проверка на наличие автокорреляции осуществляется по критерию Дарбина—Уотсона:
S(e„, - е,)2 к= ——————,
Ее,2
где е, — отклонение фактического уровня ряда в точке t от теоретического (выравненного) значения.
При К = 0 имеется полная положительная автокорреляция, при К = 2 автокорреляция отсутствует, при К = 4 — полная отрицательная автокорреляция. Прежде чем оценивать взаимосвязь, автокорреляцию необходимо исключить. Это можно сделать тремя способами.
1. Исключение тренда с авторегрессией. Для каждого из взаимосвязанных рядов динамики Х и У получают уравнение тренда:
109
X, = а„ + a,t;
y,=b„+b,t.
Далее выполняют переход к новым рядам динамики, построенным из отклонений от трендов:
у л
^=х,-х,;
А
Р = У - У
-t -t -т-
Для последовательностей (^) и (е,) выполняется проверка на автокорреляцию по критерию Дарбина — Уотсона. Если значение К близко к 2, то данный ряд отклонений оставляют без изменений. Если же К заметно отличается от 2, то по такому ряду
находят параметры уравнения авторегрессии, т. е. /\
^ = «О + "1 ^.,;
^ = р„ + р, е,,.
Заметим, что более полные уравнения авторегрессии можно получить на основе анализа автокорреляционной функции, когда определяются число параметров (а.у, к,, а.у ...; рд, (3,, Рд, ...) и соответствующие этим параметрам величины лагов.
Наконец, подсчитываются новые остатки
„. ,. л , л
^ =^,-^,ие, =e,-e,(t=i,...,T) и коэффициент корреляции признаков:
^ • е;
^ 2^2 £e;2
2. Корреляция первых разностей. От исходных рядов динамики Х и У переходят к новым, построенным по первым разностям:
X; =ДХ,=Х,-Х„,;
У; =АУ,=У,-У,,.
По ДХ и АУ определяют направление и силу связи в регрессии:
ДУ = f(AX) = Со + С, • ДХ.
3. Включение времени в уравнение связи: У, = f(X,, t). В простейших случаях уравнение выглядит следующим образом:
У,=а„+а, • X,+a,.t.
Из перечисленных методов исключения автокорреляции наиболее простым является второй, однако более эффективен первый.
110