
- •Статистика Конспект лекций
- •Часть I. Теория статистики
- •Глава 1. Предмет и метод статистики
- •1.1. Предмет, метод и основные категории статистики как науки
- •1.2. Органы государственной статистики Российской Федерации
- •Глава 2. Статистическое наблюдение
- •2.1. Основные этапы статистического исследования
- •2.2. Статистическое наблюдение — первый этап статистического исследования
- •2.3. Программно-методологические и организационные вопросы статистического наблюдения
- •2.4. Формы, виды и способы наблюдения
- •2.5. Понятие выборочного наблюдения, отбор единиц в выборочную совокупность
- •2.6. Определение ошибок выборки*
- •2.7. Определение численности выборки
- •2.8. Распространение выборочных результатов
- •Глава 3. Сводка и группировка данньк статистического наблюдения
- •3.1. Сводка статистических данных
- •3.2. Группировка статистических данных
- •3.3. Многомерные группировки в статистике
- •3.4. Статистические таблицы
- •3.5. Статистические графики
- •35 % 61 % 4% [Активы, свободные от риска ! Активы с минимальным риском Активы с повышенным риском
- •Глава 4. Статистические величины
- •4.1. Понятие абсолютной и относительной величины в статистике
- •4.2. Виды и взаимосвязи относительных величин
- •2. Относительная величина планового задания.
- •4.3. Средние величины. Общие принципы их применения
- •4.4. Расчет средней через показатели структуры
- •3.'Средний уровень оплаты труда (f):
- •4. Средний уровень фондоотдачи (н):
- •4.5. Расчет средних по результатам группировки. Свойства средней арифметической
- •4.6. Структурные средние
- •4.7 Показатели вариации
- •Глава 5. Изучение динамики общественных явлений
- •5.1. Ряды динамики. Классификация
- •5.2. Правила построения рядов динамики
- •5.3. Показатели анализа рядов динамики
- •5.4. Структура ряда динамики. Проверка ряда на наличие тренда
- •5.5. Анализ сезонных колебаний
- •5.6. Анализ взаимосвязанных рядов динамики
- •Глава 6. Индексы
- •6.1. Индивидуальные индексы и их применение в экономическом анализе
- •6.2. Общие индексы и их применение в анализе
- •6.3. Общие индексы как средние из индивидуальных индексов
- •6.5. Индексы при анализе структурных изменений
- •6.6. Индексы средних величин
- •6.7. Территориальные индексы
- •Глава 7. Статистическое изучение взаимосвязей
- •7.1. Основные понятия корреляционного и регрессионного анализа
- •7.2. Парная корреляция и парная линейная регрессия
- •Ireop u 1 I
- •7.3. Множественная линейная регрессия
- •7.4. Нелинейная регрессия. Коэффициенты эластичности
- •7.5. Множественная корреляция
- •7.6. Оценка значимости параметров взаимосвязи
- •7.7. Непараметрические методы оценки связи
35 % 61 % 4% [Активы, свободные от риска ! Активы с минимальным риском Активы с повышенным риском
Рис. 3.5. Структура активов коммерческого банка по степени риска.
Возможности применения секторных диаграмм ограничены двумя обстоятельствами. Первое заключается в том, что они сохраняют свою выразительность при делении совокупностей на небольшое число частей — не более 4-5, а за этими пределами их применение становится малоэффективным. Второе — секторная диаграмма выглядит убедительно лишь при существенных различиях сравниваемых структур, в противном случае она оказывается недостаточно выразительной.
Другой формой структурных статистических диаграмм являются полосовые диаграммы удельных весов (рис. 3.6).
54
10
20
30
40
50
60
70
80
90
100
ВЛ Активы, свободные от риска
——— Активы с минимальным риском
X—— Активы с повышенным риском
йжШЙИщв
Рис. 3.6, Структура активов коммерческого банка по степени риска.
Эта диаграмма получена путем преобразования простой полосовой диаграммы с подразделенными полосами. Преобразование заключается в том, что ряды абсолютных показателей превращены в ряды относительных чисел—удельных весов.
фигурные д иаграммы с равнения предназначены в основном для целей популяризации. Показатели в них вычерчиваются в виде определенного количества стандартных фигур, представляющих собой упрощенные изображения объектов, характерных для соответствующих явлений. Недостатком их следует считать некоторую неточность, связанную с необходимостью округления изображаемых показателей.
Для изображения экономических явлений, протекающих во времени, применяют динамические диаграммы. В отличие от диаграмм, отображающих сравнительные величины отдельных объектов или их структуры, в динамических диаграммах объектом отображения служат процессы.
Геометрически адекватной формой их отражения являются линейные координатные диаграммы. Геометрическими знаками-символами на таких диаграммах служат точки и последовательно соединяющие их прямые линии, складывающиеся в ломаные «кривые», конфигурация которых дает представление об изображаемом процессе. Ось абсцисс является в такой диаграмме осью времени с равномерно размещенными отметками, а ось ординат — осью значений, которые принимает с течением времени изучаемый показатель. По отметкам обеих шкал определяют местоположение точек в координатном поле диаграммы, а последовательно их соединяя, находят кривую динамики изображаемого на диаграмме показателя. Конфигурация каждой кривой на динамической диаграмме отражает процесс изменения во времени описываемого на диаграмме показателя, а именно: движение кривой с ходом времени вправо и вверх означает рост показателя, а
55
движение ее вправо и вниз — его падение (рис. 3.7). Таки1\ образом, кривая, проведенная в координатном поле динами ческой диаграммы, в большей мере, чем другие знаки-символь статистических диаграмм, обусловлена содержательным смысло(\
m'nfina'waoiiAnrn od пошла
Цена, руС
Врем»
Рис. 3.7. Уровень средней цены приватизационных чеков
на торгах РТСБ, руб.
Для изображения вариационных рядов применяются линейные и плоскостные диаграммы, построенные в прямоугольной системе координат. При дискретной вариации признака графиком вариационного ряда служит полигон распределения. Рассмотрим пример его построения по следующим данным.
Распределение квартир жилого дома по числу пооживаюших в них
Число живущих е квартире |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
Всего |
Число квартир |
2 |
3 |
10 |
23 |
9 |
2 |
1 |
50 |
Число квартир
Число живущих в квартире
Рис. 3.8. Распределение квартир по числу проживающих в них.
При непрерывной вариации используют, как известно, интервальные вариационные ряды, графическим изображением которых служит гистограмма. Для построения гистограммы по оси абсцисс в соответствии с принятым масштабом откладывают границы интервалов. Эти интервалы являются основаниями прямоугольников, площади которых равны либо пропорциональны частотам или частостям распределения в соответствующих интервалах.
На рис. 3.9 приведен пример построения гистограммы со следующими исходными данными.
Распределение активов коммерческого банка
Группы активов по степени риска, % |
Структура активов, % |
Высота на графике,см |
0—10 10—25 25—100 |
61 4 35 |
61 : 10= 6,1 4:15= 0,27 35 : 75 = 0,47 |
Всего |
100 |
— |
Сумма, % к итогу
Степень риска, %
Рис. 3.9. Распределение активов коммерческого банка по степени риска.
Как известно, плотность распределения — это число единиц совокупности, приходящееся на единицу ширины интервала. При равных интервалах плотность распределения прямо пропорциональна частотам или частостям, которые и используются для построения прямоугольников. При неравных интервалах гистограмма строится только по плотности распределения.
Для иллюстрации рядов распределения используются также кумуляты и огивы. Для их построения на оси абсцисс отмечаются значения дискретного признака (или концы интервалов), а на оси ординат — нарастающие итоги частот (кумулята) или частостей (огива), соответствующих этим значениям признака. Ордината кумулятивного графика показывает, сколько единиц или какая часть совокупности имеет значение признака, не превосходящее указанного на оси абсцисс (рис. 3.10). (Кумуляту распределения активов банка по степени риска рекомендуется построить самостоятельно.)
Число квартир
23456
Число живущих в квартире
Рис. 3.10. Кумулята распределения квартир по числу живущих в них.
Особый вид статистических графиков представляют собой но мограммы, при помощи которых с достаточной для практики точностью получают решение уравнений, вычисляют значения функций нескольких аргументов и т, п. Номограммы удобны для графического изображения и применения уравнений множественной линейной регрессии.