
- •Статистика Конспект лекций
- •Часть I. Теория статистики
- •Глава 1. Предмет и метод статистики
- •1.1. Предмет, метод и основные категории статистики как науки
- •1.2. Органы государственной статистики Российской Федерации
- •Глава 2. Статистическое наблюдение
- •2.1. Основные этапы статистического исследования
- •2.2. Статистическое наблюдение — первый этап статистического исследования
- •2.3. Программно-методологические и организационные вопросы статистического наблюдения
- •2.4. Формы, виды и способы наблюдения
- •2.5. Понятие выборочного наблюдения, отбор единиц в выборочную совокупность
- •2.6. Определение ошибок выборки*
- •2.7. Определение численности выборки
- •2.8. Распространение выборочных результатов
- •Глава 3. Сводка и группировка данньк статистического наблюдения
- •3.1. Сводка статистических данных
- •3.2. Группировка статистических данных
- •3.3. Многомерные группировки в статистике
- •3.4. Статистические таблицы
- •3.5. Статистические графики
- •35 % 61 % 4% [Активы, свободные от риска ! Активы с минимальным риском Активы с повышенным риском
- •Глава 4. Статистические величины
- •4.1. Понятие абсолютной и относительной величины в статистике
- •4.2. Виды и взаимосвязи относительных величин
- •2. Относительная величина планового задания.
- •4.3. Средние величины. Общие принципы их применения
- •4.4. Расчет средней через показатели структуры
- •3.'Средний уровень оплаты труда (f):
- •4. Средний уровень фондоотдачи (н):
- •4.5. Расчет средних по результатам группировки. Свойства средней арифметической
- •4.6. Структурные средние
- •4.7 Показатели вариации
- •Глава 5. Изучение динамики общественных явлений
- •5.1. Ряды динамики. Классификация
- •5.2. Правила построения рядов динамики
- •5.3. Показатели анализа рядов динамики
- •5.4. Структура ряда динамики. Проверка ряда на наличие тренда
- •5.5. Анализ сезонных колебаний
- •5.6. Анализ взаимосвязанных рядов динамики
- •Глава 6. Индексы
- •6.1. Индивидуальные индексы и их применение в экономическом анализе
- •6.2. Общие индексы и их применение в анализе
- •6.3. Общие индексы как средние из индивидуальных индексов
- •6.5. Индексы при анализе структурных изменений
- •6.6. Индексы средних величин
- •6.7. Территориальные индексы
- •Глава 7. Статистическое изучение взаимосвязей
- •7.1. Основные понятия корреляционного и регрессионного анализа
- •7.2. Парная корреляция и парная линейная регрессия
- •Ireop u 1 I
- •7.3. Множественная линейная регрессия
- •7.4. Нелинейная регрессия. Коэффициенты эластичности
- •7.5. Множественная корреляция
- •7.6. Оценка значимости параметров взаимосвязи
- •7.7. Непараметрические методы оценки связи
3.5. Статистические графики
Современную науку невозможно представить себе без применения графических методов, настолько прочно вошли они в арсенал средств научного общения и в методику научного исследования.
Особое место графические методы занимают в статистике и экономике, имеющих дело с большими комплексами цифр, сведенных в громоздкие таблицы. Здесь графические методы помогают прежде всего описанию, а затем и анализу этих данных. С помощью графиков легко выявить и наглядно представить закономерности, которые часто трудно бывает уловить в сложных статистических таблицах. При этом используются различные графики, многообразие видов которых обусловлено различиями в их статистическом содержании, способах построения и широтой круга изображаемых ими общественных явлений и процессов.
Графиками в статистике называются условные изображения числовых величин и их соотношений в виде различных геометрических образов — точек, линий, плоских фигур и т. п. Использование графиков для изложения статистических показателей позволяет придать последним наглядность и выразительность, облегчить их восприятие, а во многих случаях помогает уяснить сущность изучаемого явления, его закономерности и особенности, увидеть тенденции его развития, взаимосвязь характеризующих его показателей.
Каждый график состоит из графического образа и вспомогательных элементов. Графический образ — это совокупность точек, линий и фигур, с помощью которых изображаются статистические данные. Эти знаки образуют собственно языковую ткань графика, его основу.
Вспомогательными элементами графика являются:
1)поле графика— то пространство, в котором размещаются образующие график геометрические знаки. Поле графика характеризуется его форматом, т. е. размером и пропорциями (соотношением сторон);
51
2) пространственные ориентиры, определяющие расположение геометрических знаков в поле графика. Пространственные ориентиры задаются системой координатных сеток или контурных линий, которые делят это поле на части. В большинстве случаев в статистических графиках применяется система прямоугольных (декартовых) координат, но нередко встречаются и круговые графики, построенные по принципу полярных координат;
3) масштабные о р и е н т и р ы, придающие геометрическим знакам количественную определенность. Масштабные ориентиры определяются системой масштабных шкал или специальными масштабными знаками. Масштабные шкалы применяются в координатных статистических графиках. Эти шкалы представляют собой геометрическое место помеченных точек, а носителями их являются оси координат, на которых эти отметки располагаются. Масштабные знаки используются преимущественно для статистических карт;
4) экспликация графика, состоящая из объяснения:
а) предмета, изображаемого графиком (его названия), и
б) смыслового значения каждого знака, применяемого на данном графике. Без экспликации график нельзя прочитать и понять. Название графика должно кратко и точно раскрывать его содержание. Пояснительные тексты могут располагаться в пределах графического образа или рядом с ним (ярлыки), а также выноситься за его пределы (ключ).
Статистические графики можно классифицировать по разным признакам: назначению (содержанию), способу построения и характеру графического образа.
По содержанию или назначению можно выделить графики сравнения в пространстве, графики различных относительных величин (структуры, динамики и т. п.), графики вариационных рядов, графики размещения по территории, графики взаимосвязанных показателей. Возможны и комбинации этих графиков, например графическое изображение вариации в динамике или динамики взаимосвязанных показателей и т. п.
По способу построения графики можно разделить на диаграммы, картодиаграммы и картограммы.
По характеру графического образа различают графики точечные, линейные, плоскостные (столбиковые, почасовые, квадратные, круговые, секторные, фигурные) и объемные.
Рассмотрим правила построения столбиковой диаграммы, которая используется чаще всего для сравнения одноименных показателей, характеризующих различные объекты или территории. Значения сравниваемых показателей изображаются при этом в виде прямоугольных столбиков, имеющих одинаковую ширину и расположенных на общей горизонтальной
52
или вертикальной базовой линии. Высота (или длина) каждого столбика в определенном масштабе соответствует величине изображаемого показателя. Столбики могут располагаться вплотную либо на одинаковом расстоянии друг от друга. Примером такой диаграммы служит рис. 3.2.
Саудовская Аравия
22756
Ирак
ОАЭ
Кувейт
13417
12983 12659
Рис. 3.2. Запасы нефти в отдельных странах в 1987 г.
Разновидностью столбиковой диаграммы является поло совая (ленточная) диаграмма, для которой характерны горизонтальная ориентация столбиков (полос) и вертикальное расположение базовой линии. Полосовая диаграмма особенно удобна в тех случаях, когда отдельные объекты сравнения характеризуются противоположными по знаку показателями (рис. 3.3).
-100 -80 -60 -40 -20 0 20 40 60 80 100
•%
США
Иран
Саудовская Аравия
Рис. 3.3. Добыча нефти в отдельных странах в 1986 г. по сравнению с 1970 г.
Иногда сравниваемые объекты характеризуются резко разнящимися значениями показателей. Например, численность населения Китая в 1986 г. составляла 1057,2 млн чел., а Канады, имеющей немного большую площадь, — 25,7 млн чел. Представить эти данные с помощью столбиковой диаграммы практически невозможно, так как высота одного столбика должна в 41 раз превышать высоту другого (1057,2 : 25,7 = 41,1). В подобных случаях используют особые виды плоскостных диаграмм —квадратные или к р у г о в ы е. Их построение основано на том, что величины изображаемых показателей должны быть пропорциональны площадям квадратов или кругов, а корни квадратные из сравниваемых величин — линейным размерам этих фигур (сторонам квадратов или радиусам кругов).
53
В данном примере стороны квадратов, расположенных на горизонтальной базовой линии, соотносятся как
6,4 : 1(/1057,2 :/25,7 =32,5 : 5,1 = 6,4 : 1).
Китай
25,7
а
Канада
Рис. 3.4. Численность населения Китая и Канады, млн чел.
Квадратные и круговые диаграммы менее наглядны, чем столбиковые и полосовые, что связано с трудностью визуальной оценки соотношения площадей. Поэтому внутри квадратов и кругов следует проставлять величины изобра жаемых показателей (рис. 3.4). Еще меньшей наглядностью отличаются объемные диаграммы (например, в виде кубов), в которых лимитные раз-
меры графического образа пропорциональны корням кубическим из сравниваемых величин.
Основной формой структурных диаграмм являются секторные диаграммы (рис. 3.5). «Работающим» геометрическим параметром в секторной диаграмме удельных весов служит величина угла между радиусами: 1 % принимается на диаграмме равным 3,6°, а сумма всех углов, составляющая 360°, приравнивается к 100 %.