Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тем, у кого не получается решение заданий с дро...doc
Скачиваний:
0
Добавлен:
03.01.2020
Размер:
2.04 Mб
Скачать

§5. Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень

Умножение алгебраических дробей осуществляется по тому же правилу, что и умножение обыкновенных дробей:

Аналогично обстоит дело с делением алгебраических дробей, с возведением алгебраической дроби в натуральную степень. Правило деления выглядит так:

а правило возведения в степень

Прежде чем выполнять умножение и деление алгебраических дробей, полезно их числители и знаменатели разложить на множители — это облегчит сокращение той алгебраической дроби, которая получится в результате умножения или деления.

Пример 1. Выполнить действия:

Воспользуемся тем, что (b - а)2 = (а - b)2. Получим

Пp и м е р 2.

Мы учли, что в результате деления а - b на b - а получится -1.  Впрочем, знак «-» в данном случае лучше переместить в знаменатель:

Пример З. Выполнить действия:

Решение.

Задания по теме «Умножение дробей».

  1. Выполните умножение: А) ; Б) ; В)

  2. Представьте в виде дроби: А) ; Б) ;

  3. Упростите выражение:

Задания «Деление дробей»

  1. Выполните деление: А) ; Б) ; В)

  2. Представьте в виде дроби:

  3. Упростите выражение:

  4. Докажите тождество:

  5. Упростите выражение:

§6. Преобразование рациональных выражений

Этот параграф подводит итог всему тому, что мы, начиная с 7-го класса, говорили о математическом языке, о математической символике, о числах, переменных, степенях, многочленах и алгебраических дробях. Но сначала совершим небольшой экскурс в прошлое.

Вспомните, как в младших классах обстояло дело с изучением чисел и числовых выражений. 

Сначала вы изучали натуральные числа 1, 2, 3, 4, 5, ...) и операции над ними (но, конечно, этому предшествовало знакомство с цифрами). Затем появились целые числа (О, 1, -1, 2, -2, 3, -3, ...) — к ним относятся все натуральные числа, число 0 и целые отрицательные числа. Затем вы изучали рациональные числа — к ним относятся все целые числа и все дроби, как положительные, так и отрицательные. Таким образом, ко всякому натуральному числу, например к числу 2, можно «приклеить» три «ярлыка»: число 2 — натуральное, целое, рациональное. И это правильно, просто третий ярлык — рациональное число — достаточно широк, второй ярлык — целое число — поконкретнее, первый ярлык — натуральное число — самый конкретный. 

Ко всякому целому числу, например к числу - 2, можно приклеить два ярлыка — целое число, рациональное число. 

А, скажем, к дроби   можно приклеить только один ярлык — рациональное число. 

Аналогично обстоит дело с алгебраическими выражениями: первый этап их изучения — числа, переменные, степени («цифры»); второй этап их изучения — одночлены («натуральные числа»); третий этап их изучения — многочлены («целые числа»); четвертый этап их изучения — алгебраические дроби  («рациональные числа»). При этом каждый следующий этап как бы вбирает в себя предыдущий: так, числа, переменные, степени — частные случаи одночленов; одночлены — частные •случаи многочленов; многочлены — частные случаи алгебраических дробей. Между прочим, в алгебре используют иногда и такие термины: многочлен — целое выражение, алгебраическая дробь — дробное выражение (это лишь усиливает аналогию).

Продолжим упомянутую аналогию. Вы знаете, что любое числовое выражение после выполнения всех входящих в его состав арифметических действий принимает конкретное числовое значение — рациональное число (разумеется, оно может оказаться и натуральным числом, и целым числом, и дробью — это неважно). Точно так же любое алгебраическое выражение, составленное из чисел и переменных с помощью арифметических операций и возведения в натуральную степень, после выполнения преобразований принимает вид алгебраической дроби и опять-таки, в частности, может получиться не дробь, а многочлен или даже одночлен). Для таких выражений в алгебре используют термин рациональное выражение. 

Пример. Доказать тождество 

Решение.  Доказать тождество — это значит установить, что при всех допустимых значениях переменных его левая и правая части представляют собой тождественно равные выражения. В алгебре тождества доказывают различными способами: 

1) выполняют преобразования левой части и получают в итоге правую часть; 

2) выполняют преобразования правой части и получают в итоге левую часть; 

3) по отдельности преобразуют правую и левую части и получают и в первом и во втором случае одно и то же выражение; 

4) составляют разность левой и правой частей и в результате ее преобразований получают нуль. 

Какой способ выбрать — зависит от конкретного вида тождества, которое вам предлагается доказать. В данном примере целесообразно выбрать первый способ. 

Для преобразования рациональных выражений принят тот же порядок действий, что и для преобразования числовых выражений. Это значит, что сначала выполняют действия в скобках, затем действия второй ступени (умножение, деление, возведение в степень), затем действия первой ступени (сложение, вычитание). 

Выполним преобразования по действиям, опираясь на те правила, алгоритмы, что были выработаны в предыдущих параграфах.

Как видите, нам удалось преобразовать левую часть проверяемого тождества к виду правой части. Это значит, что тождество доказано. Однако напомним, что тождество справедливо лишь для допустимых значений переменных. Таковыми в данном примере являются любые значения а и b, кроме тех, которые обращают знаменатели дробей в нуль. Значит, допустимыми являются любые пары чисел (а; b), кроме тех, при которых выполняется хотя бы одно из равенств:

2а - b = 0, 2а + b = 0, b = 0.