
- •Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Вариант 26
- •Вариант 27
- •Вариант 28
- •Вариант 29
- •Вариант 30
Вариант 5
Найти интегралы, используя свойство линейности:
1)
|
2)
|
3)
|
4)
|
5)
|
6)
|
7)
|
8)
|
9)
|
10)
|
Найти интегралы методом подстановки:
1)
|
2)
|
3)
|
4)
|
5)
|
6)
|
7)
|
8)
|
9)
|
10)
|
11)
|
12)
|
13)
|
14)
|
Интегрирование по частям:
1)
|
2)
|
3)
|
4)
|
5)
|
6)
|
7)
|
|
Найти интегралы:
1)
|
2)
|
3)
|
4)
|
Найти интегралы от рациональных дробей:
1)
|
2)
|
3)
|
|
Вычислить интегралы:
1)
|
2)
|
3)
|
4)
|
5)
|
|
Вычислить площадь плоской фигуры, ограниченной линиями:
а) у = 8 + 2х - х2, у = 2х + 4
б) у = (х + 1)2, у2 = х + 1
в)
Вычислить объемы тел, образованных вращением фигур, ограниченных линиями:
а)
вокруг ОУ
б)
вокруг ОХ
Вычислить площадь поверхности, образованной вращением вокруг оси абсцисс кривой у2 = х - 3, отсеченной прямой х = 5.
Вариант 6
Найти интегралы, используя свойство линейности:
1)
|
2)
|
3)
|
4)
|
5)
|
6)
|
7)
|
8)
|
9)
|
10)
|
Найти интегралы методом подстановки:
1)
|
2)
|
3)
|
4)
|
5)
|
6)
|
7)
|
8)
|
9)
|
10)
|
11)
|
12)
|
13)
|
14)
|
15)
|
|
Интегрирование по частям:
1)
|
2)
|
3)
|
4)
|
5)
|
6)
|
7)
|
|
Найти интегралы:
1)
|
2)
|
3)
|
|
Найти интегралы от рациональных дробей:
1)
|
2)
|
3)
|
|
Вычислить интегралы:
1)
|
2)
|
3)
|
4)
|
5)
|
|
Вычислить площадь плоской фигуры, ограниченной линиями:
а) y = ln x, x = e и осью абсцисс
б) у2 = 2рх, х2 = 2ру
в)
Вычислить объемы тел, образованных вращением фигур, ограниченных линиями:
а) у = Sin x, x = 0, x = , y = 0, вокруг оси ОУ
б)
одной аркой циклоиды и осью ОХ;
вокруг оси ОХ.
Вычислить площадь поверхности, образованной вращением вокруг оси абсцисс кривой одной полуволны синусоиды
y = Sin x вокруг оси ОХ.