
- •Оглавление
- •§1. Плотность заряда и её вид в случае системы точечных зарядов.
- •§2. Уравнения Максвелла для электромагнитного поля в вакууме.
- •§3. Закон сохранения заряда в форме уравнения непрерывности.
- •§4. Теорема Остроградского-Гаусса.
- •§5. Потенциалы электромагнитного поля в вакууме.
- •§6. Градиентная инвариантность.
- •§7. Типы калибровок.
- •§8. Микро и Макро уравнения Максвелла для электромагнитного поля в среде.
- •§9. Материальные уравнения или уравнения связи.
- •§10. Тензоры и их свойства.
- •§11. Потенциалы электромагнитного поля в среде.
- •§12. Калибровка Лоренца в случае однородной изотропной среды.
- •§13. Уравнение Даламбера (без учёта пространственной дисперсии).
- •§14. Поведение электромагнитного поля при переходе через границу раздела двух сред.
- •§15. Уравнения Максвелла для стационарного электромагнитного поля в среде.
- •§16. Уравнения Пуассона в электростатике.
- •§17. Краевые, граничные условия. Задачи Дирихле и Неймана.
- •§18. Функция Грина задач электростатики.
- •§19. Физический смысл функции Грина.
- •§20. Теорема взаимности в электростатике.
- •§21. Функция Грина в случае неограниченной области.
- •§22. Оператор трансляции.
- •§23. Потенциал системы зарядов.
- •§24. Электрические (дипольный и квадрупольный) моменты.
- •§25. Электрическое поле системы зарядов на больших расстояниях.
- •§26. Поверхностная плотность зарядов на границе раздела двух поляризованных диэлектриков.
- •§27. Электрический дипольный момент поляризованного диэлектрика. Роль поверхностных зарядов.
- •§28. Электрическое поле поляризованного диэлектрика. Поле диполя.
- •§29. Случай однородно-поляризованного диэлектрика.
- •§30. Задача о расчёте поля внутри эллипсоидальной полости в однородно-поляризованном диэлектрике.
- •§31. Система зарядов во внешнем электростатическом поле.
- •§32. Энергия взаимодействия двух электрических мульти-полей.
- •§33. Векторный потенциал системы стационарных токов.
- •§34. Магнитный дипольный момент системы токов.
- •§35. Приближение линейного тока.
- •§36. Уравнения Максвелла для квазистационарного электромагнитного поля.
- •§37. Условия квазистационарности поля.
- •§38. Глубина проникновения квазистационарного электромагнитного поля.
- •§39. Уравнения Максвелла электромагнитных волн в вакууме.
- •§40. Волновое уравнение в случае вакуума.
- •§41. Решение волнового уравнения в случае плоской электромагнитной волны в вакууме.
- •§42. Плоская монохроматическая волна.
- •§43. Уравнения Максвелла в случае плоской монохроматической волны в вакууме.
- •§44. Разложение электромагнитных полей по плоским монохроматическим волнам.
- •§45. Теорема Пойнтинга (Закон сохранения энергии электромагнитных волн в форме уравнения непрерывности).
- •§46. Соотношение между векторами в случае плоских электромагнитных волн в вакууме.
- •§47. Функция Грина уравнения Гельмгольца.
- •§48. Запаздывающая функция Грина уравнения Даламбера.
- •§49. Теорема Пойнтинга с учётом диссипации для среды.
- •§50. Пространственно-временная дисперсия в электродинамике.
- •§51. Уравнения Максвелла для электромагнитного поля в среде с пространственно-временной дисперсией.
- •§52. Волновое уравнение в случае среды с пространственной дисперсией.
- •§53. Дисперсионное уравнение.
- •§54. Нормальные электромагнитные волны в неограниченной среде.
- •§55. Поперечные и продольные нормальные волны в среде.
- •§56. Решение дисперсионного уравнения в случае однородной и изотропной среды с пространственной дисперсией.
- •§57. Групповая скорость.
- •§58. Плазма. Определение и свойства.
- •§59. Метод самосогласования.
- •§60. Использование метода самосогласования для нахождения электростатического потенциала в плазме.
- •§61. Дебаевский радиус экранирования.
- •§62. Малые колебания в плазме.
- •§63. Запаздывающие потенциалы.
- •§64. Разложение запаздывающих потенциалов в ряды по малому параметру.
- •§65. Калибровка Лоренца в случае запаздывающих потенциалов.
- •§66. Дипольное излучение.
- •§67. Волновая зона дипольного излучения.
- •§68. Ближняя зона дипольного излучения.
- •§69. Интенсивность дипольного излучения в волновой зоне.
- •§70. Теорема взаимности в теории излучения.
- •Задачи по курсу «Электродинамика сплошных сред»
- •Задачи по курсу «Электродинамика сплошных сред» и их решения.
- •Список литературы.
Список литературы.
Основная литература
1. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика:
а. Т.2. Теория поля. М, Наука, 1988, 1973. 530.1 (075.8) Л-222
б. Т.8. Электродинамика сплошных сред. М, Наука, 1992, 1982. 538.3 (075.8) Л-222
2. Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. М., Наука, 1990, 1979. 537.8 (075.8) В-493; 538.56 (075.8) В-493
3. Бредов М.М., Румянцев В.В., Топтыгин И.Н.Классическая электродинамика. М., Наука, 1985. 530.1 (075.8) Б-877
4. Галицкий В.М., Ермаченко В.М. Макроскопическая электродинамика. М., Высшая школа, 1988. 537.8 (075.8) Г-158
5. Алексеев А.И. Сборник задач по электродинамике, М., Наука, 1977.
Дополнительная литература
1. Батыгин В.В., Топтыгин И.Н. Сборник задач по электродинамике. М, Наука, 1970 г. 538.3 (076.1) Б-288
2. Сиротин Ю.И., Шаскольская М.П. Основы кристаллофизики. М., Наука, 1979
3. Гинзбург В.Л. Теоретическая физика и астрофизика. Дополнительные главы. М., Наука, 1987, 1981.