
- •Введение
- •1 Случайные события. Вероятности случайных событий
- •1.1 Пространство элементарных событий. Операции над событиями
- •1.1.1 Пространство элементарных событий
- •1.1.2 Операции над событиями
- •1.2 Вероятность
- •1.2.1 Относительная частота случайного события. Понятие вероятности случайного события. Аксиомы теории вероятностей
- •1.2.2 Классический метод определения вероятности
- •1.2.3 Комбинаторика и вероятность
- •1.2.4 Геометрические вероятности
- •1.3 Теоремы сложения и умножения вероятностей
- •1.3.1 Теоремы сложения вероятностей
- •1.3.2 Условная вероятность. Теорема умножения вероятностей
- •1.3.3 Независимые события
- •1.4 Формула полной вероятности. Формула Байеса
- •1.5 Последовательности независимых испытаний
- •1.5.1 Формула Бернулли
- •1.5.2 Локальная и интегральная теоремы Лапласа
- •1.5.3 Предельная теорема Пуассона
- •2 Случайные величины
- •2.1 Дискретные и непрерывные случайные величины
- •2.2 Закон распределения случайной величины
- •2.2.1 Ряд распределения
- •2.2.2 Функция распределения
- •2.2.3 Функция плотности распределения вероятностей непрерывной случайной величины
- •2.3 Числовые характеристики случайных величин
- •2.4 Некоторые наиболее важные для практики распределения случайных величин
- •2.4.1 Биномиальное распределение
- •2.4.2 Геометрическое распределение
- •2.4.3 Распределение Пуассона
- •2.4.4 Равномерный закон распределения
- •2.4.5 Показательное (экспоненциальное) распределение
- •2.4.6 Нормальный закон распределения
- •Пример выполнения контрольной работы по теории вероятностей
- •Варианты заданий для контрольной работы по теории вероятностей
- •Приложение а (справочное) Таблица значений функции плотности стандартного нормального распределения
- •Приложение б (справочное) Таблица значений функции Лапласа
- •Приложение в (справочное) Таблица значений
- •Приложение г (справочное) Рабочая программа по дисциплине «Теория вероятностей и математическая статистика»
- •1 Цели и задачи дисциплины, её место в учебном процессе
- •1.1 Цель преподавания дисциплины
- •1.2 Задачи изучения дисциплины
- •2 Содержание дисциплины
- •2.1 Случайные события и их вероятности
- •2.2 Одномерные случайные величины
- •2.3 Многомерные случайные величины
- •2.4 Основные понятия математической статистики
- •2.5 Элементы теории статистического оценивания
- •2.6 Статистическая проверка параметрических гипотез
- •2.7 Статистическая проверка непараметрических гипотез
- •2.8 Элементы регрессионного и корреляционного анализа
- •2.9 Элементы дисперсионного анализа
- •3 Контрольные работы
- •Список литературы
- •Оглавление
- •2 46653, Г. Гомель, ул. Кирова, 34.
2.3 Многомерные случайные величины
2.3.1 Определение многомерной случайной величины. Понятие о моделях распределения многомерных случайных величин. Многомерные дискретные, непрерывные и смешанные величины. Числовые характеристики многомерных случайных величин. Зависимые и независимые случайные величины.
2.4 Основные понятия математической статистики
2.4.1 Предмет и задачи математической статистики. Генеральная и выборочная совокупности. Статистический ряд. Статистическое распределение случайной величины. Эмпирическая функция распределения. Графическое изображение статистических рядов. Распределения, используемые в статистике: 2, Стьюдента, Фишера.
2.5 Элементы теории статистического оценивания
2.5.1 Постановка задачи оценки неизвестных параметров распределения случайных величин. Точечные и интервальные оценки параметров распределения. Свойства точечных оценок. Доверительный интервал и доверительная вероятность. Построение доверительного интервала для математического ожидания случайной величины, имеющей нормальный закон распределения (с известным и неизвестным среднеквадратическими отклонениями). Построение доверительного интервала для среднеквадратического отклонения случайной величины, имеющей нормальный закон распределения.
2.6 Статистическая проверка параметрических гипотез
2.6.1 Основные определения статистической проверки гипотез. Статистический критерий значимости проверки гипотез. Ошибки, допускаемые при статистической проверке гипотез. Уровень значимости статистического критерия. Проверка гипотез о математическом ожидании случайной величины, имеющей нормальное распределение (с известным и неизвестным среднеквадратическим отклонением).
2.7 Статистическая проверка непараметрических гипотез
2.7.1 Основные понятия. Критерии согласия и однородности. Критерий согласия Пирсона (2) и Колмогорова (). Проверка гипотезы о виде закона распределения случайной величины. Методические указания к применению критериев согласия. Примеры обработки результатов эксперимента.
2.8 Элементы регрессионного и корреляционного анализа
2.8.1 Основные понятия регрессионного и корреляционного анализа. Построение выборочного уравнения регрессии методом наименьших квадратов. Коэффициентов корреляции. Коэффициент детерминации. Проверка значимости коэффициентов корреляции и детерминации. Числовой пример одномерного линейного регрессионного анализа. Анализ соответствия математической модели (уравнения регрессии) экспериментальным данным.
2.9 Элементы дисперсионного анализа
2.9.1 Предмет дисперсионного анализа. Однофакторный дисперсионный анализ.
3 Контрольные работы
Основные цели выполнения контрольной работы:
– активизация самостоятельной работы студентов;
– изучение студентами литературы по дисциплине;
– получение практических навыков решения задач по теории вероятностей.
Студенты выполняют две контрольные работы на темы: «Случайные события. Вероятности случайных событий» и «Одномерные случайные величины. Законы распределения».
Контрольная работа № 1 проводится с целью проверки усвоения тем по вычислению вероятностей случайных событий; контрольная работа № 2 – с целью проверки усвоения тем по законам распределения дискретных и непрерывных случайных величин.