
- •4. Фундаментальные и составные частицы. Их характеристики.
- •5. Спиновое квантовое число. Бозоны и фермионы. Принцип запрета.
- •6. Лептоны. Электрический и лептонные заряды.
- •7. Кварки и барионы. Электрический и барионный заряды. Кварковый состав протона и нейтрона.
- •8. Частицы и античастицы. Аннигиляция.
- •9. Сильное взаимодействие и его роль в природе.
- •10.Электромагнитное взаимодействие и его роль в природе.
- •11.Слабое взаимодействие и его роль в природе.
- •12.Гравитационное взаимодействие и его роль в природе.
- •13.Принцип минимума энергии. Связанные состояния. Пороговая энергия.
- •14.Агрегатные состояния вещества. Условия существования вещества в том или ином агрегатном состоянии.
- •15.Радиус – вектор, перемещение, скорость и ускорение материальной точки. Траектория.
- •16.Инерциальные системы отсчета. Второй закон Ньютона.
- •18.Угловые скорость и ускорение. Уравнение динамики вращательного движения абсолютно твердого тела.
- •19.Момент импульса материальной точки. Момент инерции и момент импульса вращающегося твердого тела.
- •20.Момент силы. Закон сохранения момента импульса.
- •21.Работа и мощность.
- •22.Кинетическая энергия материальной точки и абсолютно твердого тела.
- •23.Консервативные силы. Связь работы консервативной силы с потенциальной энергией.
- •24.Диссипативные силы и их работа. Какие превращения энергии происходят при работе диссипативных сил?
- •25.Закон сохранения и превращения энергии. В каком случае сохраняется механическая энергия системы?
- •26.Напряженность и потенциал электростатического поля, связь между ними.
- •27.Расчет электрических полей с помощью принципа суперпозиции.
- •28.Разность потенциалов. Работа электрического поля по переносу электрического заряда.
- •29.Циркуляция вектора напряженности электростатического поля. Потенциальный характер электростатического поля.
- •30.Циркуляция вектора магнитной индукции . Вихревой характер магнитного поля.
- •31.Вектор магнитной индукции. Силы в магнитном поле.
- •32.Магнитный поток. Явление электромагнитной индукции. Закон Фарадея – Ленца.
- •33.Циркуляция вектора напряженности электрического поля, порожденного переменным магнитным полем. Вихревой характер этого поля.
- •34.Закон Ома в локальной форме при наличии сторонних сил.
- •35.Напряжение. Закон Ома для неоднородного участка цепи.
- •36.Эдс источника тока. Закон Ома для замкнутой цепи.
- •37.Колебания. Фаза, период и циклическая частота колебаний.
- •39.Энергия фотона. Внешний фотоэффект. Красная граница фотоэффекта.
- •40.Длина волны де Бройля и волновые свойства микрочастиц. Сформулируйте основные различия в поведении классических и квантовых объектов.
- •41.Соотношение неопределенностей Гейзенберга. Почему понятие траектории движения неприменимо к описанию поведения микрообъектов?
- •42.Квантовое состояние. Волновая функция. Какой физический смысл имеет волновая функция?
- •43.Макросистемы. Термодинамический и статистический методы изучения макросистем.
- •44.Идеальный газ. Термодинамические параметры. Уравнение состояния идеального газа.
- •45.Распределение энергии по степеням свободы молекулы. Средняя энергия молекулы одноатомного, двухатомного и многоатомного газов?
- •46.Внутренняя энергия идеального газа.
- •47.Работа и количество теплоты. Первое начало термодинамики.
- •48.Второе начало термодинамики. Различные формулировки.
- •49.Энтропия. Термодинамическое определение энтропии.
- •51.Тепловая машина. Кпд тепловой машины. Кпд идеального цикла Карно.
- •53.Релятивистское сокращение пространства и релятивистское замедление времени.
- •54.Релятивистский импульс и релятивистская энергия. Связь между ними.
- •55.Энергия покоя. Релятивистская кинетическая энергия
53.Релятивистское сокращение пространства и релятивистское замедление времени.
Законы, открытые Эйнштейном, получили название релятивистских.
Формула
релятивистского
сокращения пространства:
Согласно этой формуле наблюдатель, движущийся вдоль отрезка, собственная длина которого равна l0 , получит при измерении длины этого отрезка величину l, меньшую, чем l0. Таким образом, для движущегося наблюдателя пространство вдоль направления его движения сокращается.
Формула
релятивистского
замедления времени:
Согласно этой формуле наблюдатель, движущийся относительно системы отсчета, в которой происходят некоторые события с промежутком ∆t0, получит при измерении промежутка времени между этими событиями величину ∆t, большую, чем ∆t0. Таким образом, для движущегося наблюдателя время замедляется.
54.Релятивистский импульс и релятивистская энергия. Связь между ними.
Если
преобразования Лоренца продифференцировать
по собственному времени некоторой
движущейся частицы с учетом замедления
времени, то мы получим новые, релятивистские
выражения для импульса и полной энергии
этой частицы, удовлетворяющие
соответствующим законам сохранения:
где v – скорость частицы относительно данной системы отсчета, а m – ее масса покоя. Поскольку скорость движения относительна, импульс и энергия частицы зависят от системы отсчета.
55.Энергия покоя. Релятивистская кинетическая энергия
Если частица покоится в некоторой системе отсчета, то ее энергия в этой системе будет равна величине E0 = mc2 , называемой энергией покоя частицы. Поэтому энергия Е называется полной, так как включает в себя и энергию покоя, и энергию движения.
Исключив скорость из выражений для импульса и полной энергии, получим формулу связи массы покоя частицы с ее релятивистскими импульсом и полной энергией: Е2= p2c2+m2c4
РЕЛЯТИВИСТСКАЯ
КИНЕТИЧЕСКАЯ ЭНЕРГИЯ