- •Передмова “Речовина народжується з вакуума завдяки
- •Лекція перша головні параметри та опис стану газів
- •1.1. Поняття тиску і температури
- •1. 2. Електричні методи вимірювання температури
- •1. 2. 1 Метод електричного опору
- •1. 2. 2. Термопарний метод
- •1. 3. Поняття “газ” і “пара”
- •1. 4. Закони ідеальних газів
- •1.4.1. Закон Бойля–Маріотта
- •1.4.2. Закон Гей–Люссака
- •1.4.3. Закон Шарля
- •1.4.4. Об’єднаний газовий закон Менделеєва–Клапейрона
- •1.4.5. Закон Авогадро
- •1.4.6. Закон Дальтона
- •Запитання для самоперевірки
- •Лекція друга молекулярно – кінетична теорія газів
- •2.1. Елементи молекулярно – кінетичної теорії газів. Основне рівняння молекулярно – кінетичної теорії
- •2.2. Рівняння Больцмана
- •2.3. Дослід Кантора
- •2.4. Барометрична формула
- •2.5. Максвеллівський розподіл швидкостей молекул газу
- •2.5.1. Швидкості молекул газу
- •Запитання для самоперевірки
- •3. 2. Середня довжина вільного пробігу молекул
- •Ефузія. Закон Грехема
- •Термічна ефузія
- •Запитання для самоперевірки
- •Лекція четверта явища переносу в газах
- •4.1. Теплопровідність газів. Закон Фур’є
- •4.2. Дифузія в газах. Закон Фіка – основний закон дифузії
- •Коефіцієнт в’язкості
- •Між коефіцієнтом в’язкості і коефіцієнтом теплопровідності існує співвідношення
- •Запитання для самоперевірки
- •Течія газу через вакуумні магістралі
- •5.1. Число Кнудсена
- •5. 2. Ступені вакууму
- •Вважається, що
- •5.3. Режими течії газів. В’язкісний режим
- •5.4. Молекулярний режим
- •5.5. Порівняння двох режимів течії газу
- •5.6. Перепускна властивість вакуумпроводів
- •5.6.1. Провідність вакуумпроводів (в’язкісний режим)
- •5.6.2. Провідність вакуумпроводів (молекулярний режим)
- •5.6.3. Провідність вакуумпроводів (в’язкістно - молекулярний режим)
- •Запитання для самоперевірки
- •Лекція шоста основні визначення фізико-хімічних явищ при низьких тисках оточуючих газів
- •6.1. Визначення переходів між фізичними станами речовини. Тиск насиченої пари
- •6.2. Швидкість випарювання або сублімації речовини
- •6.3. Закономірності насиченої пари
- •6.4. Особливості конденсації
- •6.4.1. Принцип холодної стінки
- •6.4.2. Використання явищ випарювання і конденсаціі у вакуумній техніці. Напилення тонких плівок твердої речовини
- •6.4.3. Дистиляція у вакуумі
- •6.4.4. Дифузійні насоси
- •6.4.5. Лампи розжарювання
- •6.4.6. Відкачка електровакуумних приладів
- •Запитання для самоперевірки
- •Лекція сьома і восьма хімічні явища у вакуумі
- •7.3.2. Другий наслідок (вплив зміни тиску)
- •7.3.3. Використання у джерелах світла. Кругова реакція нагрітого вольфраму
- •7.3.3.1. Дисоціація азидів лугоземельних металів
- •Сорбційні явища
- •8.1. Сорбція і її види
- •8.1.1. Фізична адсорбція і її головні закономірності
- •8.1.1.1. Приклади фізичної адсорбції
- •8.1.2. Хімічна адсорбція
- •8.1.3. Абсорбція газів металами
- •8.2. Дифузія газів через метали
- •8.3. Поглинання газів при електричному розряді
- •8.4. Закони газовиділення металами
- •8.5. Газопоглиначі
- •8.5.1. Газопоглиначі, що випарюються
- •8.5.2. Газопоглиначі, що не випарюються
- •8.6. Знегаження скла і металів
- •Запитання для самоперевірки
- •Теоретичні основи процесу відкачки
- •9.1. Процес створення вакууму і головні параметри вакуумних систем
- •9.1.1. Швидкодія насоса. Швидкодія відкачки об’єкта
- •9.1.2. Потік газу
- •9.2. Головне рівняння вакуумної техніки
- •Запитання для самоперевірки
- •Лекція десята техніка отримання вакууму вакуумні насоси
- •10.1. Головні параметри вакуумних насосів
- •10.2. Розрахунок швидкодії вакуумного насоса
- •Експериментальне визначення швидкодії насоса. Метод постійного об’єму
- •10.4. Метод постійного тиску
- •10.5. Класифікація вакуумних насосів
- •10.5.1. Насоси, що працюють на основі закону Бойля-Маріотта. Поршневий насос
- •10.5.2. Крапельний ртутний насос
- •10.5.3. Обертовий ртутний насос Геде
- •10.5.4. Пластинчато-роторний насос
- •10.5.5. Параметри пластинчато-роторних насосів
- •10.5.6. Пластинчато-статорний насос
- •10.5.7. Золотникові насоси
- •Запитання для самоперевірки
- •Лекція одинадцята обертові насоси (продовження)
- •11. 1. Масло для обертових насосів
- •11. 2. Вказівки при роботі з обертовими масляними насосами. Розміщення
- •11. 3. Запуск насоса
- •11. 4. Вимикання обертового насоса
- •11. 5. Обертові газобаластні насоси
- •11. 6. Багатопластинчасті насоси
- •11. 7. Двороторний насос Рутса
- •11. 8. Молекулярний обертовий насос
- •11. 9. Молекулярний насос Гольвека
- •11. 10. Насос Зігбана
- •11.12. Переваги та недоліки механічніх молекулярних насосів Переваги:
- •Недоліки:
- •Запитання для самоперевірки
- •Лекція дванадцята пароструминні насоси
- •12. 1. Пароструминний насос Геде
- •12. 2. Дифузійно-конденсаційний насос Ленгмюра
- •12. 3. Парортутні дифузійні насоси
- •12. 4. Металеві парортутні дифузійні насоси
- •Дійсно, з рівняння Бернуллі випливає, що
- •12. 7. Переваги й недоліки парортутних насосів
- •12. 8. 1. Робочі рідини для паромасляних насосів
- •12. 9. Металевий розгінний паромасляний насос
- •12. 10. Зауваження до роботи з пароструминними насосами
- •12. 11. Запуск і зупинка пароструминних насосів
- •Запитання для самоперевірки
- •Лекція тринадцята насоси високого вакууму
- •13. 1. Іонні насоси
- •13. 2. Металеві іонні насоси
- •13. 3. Скляний іонно-сорбційний насос
- •13. 4. Магніторозрядний іонно-сорбційний насос
- •5. Кріогенні адсорбційні насоси
- •Запитання для самоперевірки
- •Лекція чотирнадцята вимірювання низьких тисків
- •14.1. Класифікація манометрів
- •14. 2. Деформаційні манометри
- •14. 3. Рідинні манометри
- •14.4.1. Методи градуювання манометра Мак-Леода
- •Запитання для самоперевірки
- •Теплові манометричні перетворювачі
- •15. 1. Манометр опору
- •15. 2. Термопарний манометричний перетворювач лт - 2
- •15. 3. Іонізаційні манометричні перетворювачі
- •15. 4. Іонізаційний манометр Байярда – Альперта
- •15. 5. Радіоактивний манометр ( альфатрон )
- •15. 6. Груба оцінка вакууму
- •Запитання для самоперевірки
- •Лекція шістнадцята вимірювання парціальних тисків
- •16. 2. Омегатрон
- •16. 3. Тропатрон
- •17. 2. Типові вакуумні системи
- •17. 3. Розрахунок тривалості відкачки вакуумної системи
- •Запитання для самоперевірки
- •Література
- •61002 , Харків, хнамг, вул. Революціі , 12
- •61002, Харків, вул.Революції, 12
11. 4. Вимикання обертового насоса
В
Рис.
11.2
Рис.
11.3
Після зупинки насоса кран необхідно повернути на атмосферу, тобто з’єднати впускний патрубок з атмосферою. Тоді тиск збоку впускного патрубка зрівняється з тиском на випускному патрубку і масло не буде проникати до вакуумної системи. Триходовий кран можна замінити механічним затискачем (рис. 11.3) при гумовому з’єднанні насоса з вакуумною системою, який надійно перетискає гумову трубку.
11. 5. Обертові газобаластні насоси
З
Рис. 11-4.
Рис. 11.4
У результаті тиск газу, що створюється в випускному об’ємі, буде недостатнім для відкривання випускного клапана і насос буде працювати вхолосту. Водяні крапельки разом з маслом, що зменшує тертя рухомих частин, будуть проникати з випускного простору до впускного з низьким тиском, де швидко випарюються і водяна пара знову потрапляє до вакуумної системи. Для відкачки водяної пари з вакуумних систем були створені газобаластні насоси.
Дія газобаластних насосів основана на введені через спеціальний отвір у статорі відповідної кількості атмосферного повітря (баластного газу) до робочого простору працюючого насоса, коли він буде ізольованим від впускного і випускного отворів. У результаті суміш пари і повітря матиме атмосферний тиск і клапан на випускному отворі відкриється раніше, ніж розпочнеться конденсація водяної пари, тому вона практично вся вийде через випускний отвір і масло, що циркулює в робочому просторі насоса, не буде забруднюватися.
З
Рис. 11-4.
11. 6. Багатопластинчасті насоси
При необхідності відкачки великих об’ємів до низького вакуума або заводських централізованих вакуумпроводів технологічних систем до попереднього вакуума використовують багатопластинчасті обертові насоси (рис. 11.5). Насос має циліндричний ротор, що обертається навколо своєї осі, паралельно зміщеної відносно вісі статора. У роторі зроблені прорізи, в яких вільно вставлені стальні пластини.
При обертанні ротора пластини щільно притискаються до поверхні статора під дією відцентрової сили і розділяють серпоподібний робочий простір між поверхнями статора і ротора на багато камер. Газ, що потрапляє з вакуумної системи до впускного отвору, заповнює камери і переноситься, попередньо стискуючись, до випускного отвору. Щоб запобігти виникненню небезпечно високих тисків при стисканні газу, в статорі передбачені випускні клапани 1, 2, 3.
Рис. 11.5
Для зменшення тертя до робочого простору вводиться невелика кількість компресорного масла (марки М). Корпус насоса і торцеві кришки охолоджуються проточною водою. Число обертів ротора досягає 25 об/с, а потужність електродвигуна може бути 100 кВт.
Граничний тиск багатопластинчастих обертових насосів не зменшується нижче 10 Торр. У той же час вони мають велику швидкодію (до 1000 л/с).
