
- •Геометрия в определениях и теоремах
- •Геометрия 7-9
- •Геометрия 7 глава 1
- •§1. Прямая и отрезок.
- •§2. Луч и угол.
- •§3. Сравнение отрезков и углов.
- •§4. Измерение отрезков.
- •§5. Измерение углов.
- •§6. Перпендикулярные прямые.
- •Глава 2
- •§1. Первый признак равенства треугольников.
- •§2. Медианы, биссектрисы и высоты треугольника.
- •§3. Второй и третий признаки равенства треугольников.
- •§4. Задачи на построение.
- •Глава 3
- •§1. Признак параллельности двух прямых.
- •§2. Аксиома параллельных прямых.
- •Глава 4
- •§1. Сумма углов треугольника.
- •§2. Соотношения между сторонами и углами треугольника.
- •§3. Прямоугольные треугольники.
- •§4. Построение треугольника по трем элементам.
- •Геометрия 8
- •Глава 5
- •§1. Многоугольники.
- •§2. Параллелограмм и трапеция.
- •§3. Прямоугольник, ромб, квадрат.
- •Глава 6
- •§1. Площадь многоугольника.
- •§2. Площади параллелограмма, треугольника и трапеции.
- •§3. Теорема Пифагора.
- •Глава 7
- •§1. Определение подобных треугольников.
- •§2. Признаки подобия треугольников.
- •§3. Применение подобия к доказательству теорем и решению задач.
- •§4. Соотношения между сторонами и углами прямоугольного треугольника.
- •Глава 8
- •§1. Касательная к окружности.
- •§2. Центральные и вписанные углы.
- •§3. Четыре замечательные точки треугольника.
- •§4. Вписанная и описанная окружности.
- •Глава 9
- •§1. Понятие вектора.
- •§2. Сложение и вычитание векторов.
- •§3. Умножение вектора на число.
- •Геометрия 9 глава 10
- •§1. Координаты вектора.
- •§2. Простейшие задачи в координатах.
- •§3. Уравнения окружности и прямой.
- •Глава 11
- •§1. Синус, косинус и тангенс угла.
- •§2. Соотношения между сторонами и углами треугольника.
- •§3. Скалярное произведение векторов.
- •Глава 12
- •§1. Правильные многоугольники.
- •§2. Длина окружности и площадь круга.
- •Глава 13
- •§1. Понятие движения.
- •§2. Параллельный перенос и поворот.
- •Приложения
- •Геометрия 10-11
- •Геометрия 10
- •Глава 1
- •§1. Параллельность прямых, прямой и плоскости.
- •§2. Взаимное расположение прямых в пространстве. Угол между двумя прямыми.
- •§3. Параллельность плоскостей.
- •§3. Тетраэдр и параллелепипед.
- •Глава 2
- •§1. Перпендикулярность прямой и плоскости.
- •§2. Перпендикуляр и наклонные. Угол между прямой и плоскостью.
- •§2. Двугранный угол. Перпендикулярность плоскостей.
- •Глава 3
- •§1. Понятие многогранника. Призма.
- •§2. Пирамида.
- •§3. Правильные многогранники.
- •Геометрия 11
- •Глава 4
- •§1. Понятие вектора в пространстве.
- •§2. Сложение и вычитание векторов. Умножение вектора на число.
- •§2. Компланарные векторы.
- •Глава 5
- •§1. Координаты точки и координаты вектора.
- •§2. Скалярное произведение векторов.
- •§3. Движения.
- •Глава 6
- •§1. Цилиндр.
- •§2. Конус.
- •§3. Сфера.
- •Глава 7
- •§1. Объем прямоугольного параллелепипеда.
- •§2. Объем прямой призмы и цилиндра.
- •§3. Объем наклонной призмы, пирамиды и конуса.
- •§4. Объем шара и площадь сферы.
- •Приложения
Глава 2
Треугольники.
§1. Первый признак равенства треугольников.
14.
○Определение. Треугольником называется геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, соединяющих эти точки.
○Определение. Периметром треугольника называется сумма длин всех его сторон.
○Замечание 1. В равных треугольниках против равных сторон лежат равные углы.
○Замечание 2. В равных треугольниках против равных углов лежат равные стороны.
15.
■Теорема (первый признак равенства треугольников). Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
§2. Медианы, биссектрисы и высоты треугольника.
16.
○Определение. Перпендикуляром, проведенным из точки к прямой, называется отрезок, соединяющий данную точку и точку на данной прямой и лежащий на прямой, перпендикулярной данной.
○Определение. Основанием перпендикуляра, проведенного из точки к прямой, называется его конец, лежащий на данной прямой.
■Теорема (о единственности перпендикуляра к прямой). Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.
17.
○Определение. Медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
○Определение. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.
○Определение. Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.
18.
○Определение. Треугольник называется равнобедренным, если у него две стороны равны.
○Определение. Боковыми сторонами равнобедренного треугольника называются его равные стороны.
○Определение. Треугольник называется равносторонним, если все его стороны равны.
■Теорема (1 свойство равнобедренного треугольника). В равнобедренном треугольнике углы при основании равны.
■Теорема (2 свойство равнобедренного треугольника). В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
●Следствие 1. В равнобедренном треугольнике высота, проведенная к основанию, является медианой и биссектрисой.
●Следствие 2. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
§3. Второй и третий признаки равенства треугольников.
19.
■Теорема (второй признак равенства треугольников). Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
20.
■Теорема (третий признак равенства треугольников). Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
§4. Задачи на построение.
21.
*●Определение. Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки.
*○Определение. Центром окружности называется точка равноудаленная от всех точек окружности.
○Определение. Радиусом окружности называется отрезок, соединяющий центр окружности с какой-нибудь ее точкой.
○Определение. Хордой называется отрезок, соединяющий две точки окружности.
○Определение. Диаметром окружности называется хорда, проходящая через ее центр.
○Определение. Дугой окружности называется каждая из двух частей, на которые две точки делят окружность.
○Определение. Кругом называется часть плоскости, ограниченная окружностью.