- •Введение
- •§ 1. Предмет теоретической механики. Основные понятия
- •Аксиомы статики. Связи и их реакции. Трение. Классификация сил
- •§ 1. Краткие сведения о развитии статики
- •§ 2 Аксиомы статики
- •§ 3. Связи и их реакции
- •§ 3. Система сходящихся сил. Способы нахождения равнодействующей системы сходящихся сил
- •Момент силы относительно точки и оси. Главный вектор и главный момент. Пара сил. Момент силы относительно точки
- •Главный вектор и главный момент системы сил
- •Пара сил
- •§ 6. Теорема о параллельном переносе силы
- •Различные случаи преобразования системы сил
- •Графическое нахождение центра тяжести площади плоской фигуры
- •1) Разбить рассматриваемую фигуру на элементарные, положение центров тяжести, которых можно легко определить;
- •§ 6. Скорость движения точки
- •Направление вектора V указано на рис. 37. Перейдем к рассмотрению неравномерного криволинейного движения точки.
- •§ 10. Скорость точки в естественных координатах
- •§ 15. Некоторые сведения из дифференциальной геометрии
- •Интегрируя, найдем
- •6. Прямолинейные гармонические колебания точки. Пусть точка движется по прямой, например по оси Ох, и ее расстояние х от начала координат изменяется по закону
- •Сложные движения точки
- •§ 1. Абсолютное, относительное и переносное движения точки
- •§ 7. Мгновенный центр скоростей и способ его нахождения
- •§ 1. Дифференциальные уравнения поступательного движения твердого тела
- •§ 2. Дифференциальное уравнение вращательного движения твердого тела вокруг неподвижной оси
- •§ 3. Малые колебания физического и математического маятников
- •§ 4. Дифференциальные уравнения плоско-параллельного движения твердого тела
- •§ 5. Дифференциальные уравнения вращательного движения твердого тела вокруг неподвижной точки (динамические уравнения Эйлера)
- •§ 6. Об интегрировании динамических уравнений Эйлера
- •§ 7. Дифференциальные уравнения движения свободного твердого тела
- •§ 1. О допущениях в приближенной теории гироскопов
- •§ 2. Основное уравнение приближенной теории гироскопов
- •§ 1. Общие замечания
- •§ 2. Гипотеза Ньютона о коэффициенте восстановления
- •§ 3. Опытное определение коэффициента восстановления
- •§ 4. Прямой удар двух шаров
- •§ 5. Не вполне упругий удар двух шаров
- •§ 6. Косой удар двух шаров
- •§ 7. Неупругий удар двух шаров
- •§ 1. Общие замечания
- •§ 2. Уравнение Мещерского
- •§ 3. Первая задача к. Э. Циолковского
- •§ 4. Вторая задача к. Э. Циолковского
§ 7. Мгновенный центр скоростей и способ его нахождения
Из построения плана скоростей вытекает, что в каждый момент существует точка плоской фигуры, скорость которой равна нулю. Этой точке плоской фигуры соответствует полюс на плане скоростей.
Точкой плоской фигуры, скорость которой в данный момент времени равна нулю, называется мгновенным центром скоростей (МЦС). Условимся обозначать его буквой Р. Положение мгновенного центра скоростей можно определить двумя геометрическими способами: 1) по заданной скорости какой – либо точки плоской фигуры и мгновенной угловой скорости вращения этой фигуры; 2) по известным направлениям скоростей двух точек плоской фигуры.
Первый способ. Пусть заданная скорость υА точки А плоской фигуры и мгновенная угловая скорость ω вращения фигуры вокруг точки А (рис. 73, а). Тогда по формуле (ІІ.95) получим для мгновенного центра скоростей Р
υР= υА+ υАР.
Но, по определению точки Р , υР=0. Следовательно,
υАР= -υА
откуда
υАР= υА
где
υАР= ω·АР
Следовательно,
ω·АР= υА
Откуда расстояние мгновенного центра скоростей Р от точки А равно
АР
=
Итак, мгновенный центр скоростей находится на перпендикуляре, проведенном из начала вектора скорости заданной точки А на расстоянии, равном отношению модуля скорости заданной точки к модулю угловой скорости.
Второй способ. Пусть заданы направления скоростей двух точек А и В (рис. 73, б) движущейся плоской фигуры. Требуется определить положение мгновенного центра скоростей. Выбирая в качестве полюса точку Р, по формуле (ІІ.95) получим
υА = υР + υАР , υВ= υР+ υРВ.
Но υР= 0, следовательно,
υА= υРА , υА= υРВ
т.е. скорости точек А и В можно рассматривать как скорости в их вращательном движении вокруг мгновенного центра скоростей Р. Так как эти скорости перпендикулярны к отрезкам, соединяющим заданные точки с мгновенным центром скоростей Р, то мгновенный центр скоростей находится в точке пересечения перпендикуляров, проведенных из начала векторов скоростей двух точек плоской фигуры,
Так как
Следовательно, величины скоростей двух точек тела при плоско-параллельном движении относятся между собой как их расстояния от мгновенного центра скоростей.
§ 8. Частные случаи нахождения мгновенного центра скоростей
Если скорости двух точек плоской фигуры перпендикулярны к соединяющему их отрезку, то мгновенный центр скоростей находится в точке пересечения указанного отрезка с прямой, соединяющей концы векторов скоростей двух точек (рис. 74, а, б). В случае, когда скорости двух точек плоской фигуры равны и параллельны (рис. 74, в), то мгновенный центр скоростей удаляется на бесконечность, т. е. движение мгновенно поступательное.
ДИНАМИКА ТВЕРДОГО ТЕЛА
