Закон Біо-Савара-Лапласа
Матеріал з Вікіпедії — вільної енциклопедії.
Неперевірена
версія
Перейти до: навігація, пошук
Мал. 1.
Закон Біо-Савара-Лапласа — закон, який визначає магнітну індукцію навколо провідника, в якому протікає електричний струм. Початково Жан-Батіст Біо і Фелікс Савар на підставі своїх експериментів сформулювали закон, що визначав напруженість магнітного поля навколо прямолінійного дуже довгого провідника зі струмом. Цей закон називають законом Біо-Савара. П'єр-Симон Лаплас узагальнив результати Біо та Савара, сформулювавши закон, який визначав напруженість магнітного поля в будь-які точці навколо контура зі струмом довільної форми. Хоча історично закон був сформульований для напруженості магнітного поля, в сучасному формулюванні використовується магнітна індукція.
[Ред.] Магнітне поле навколо прямолінійного провідника
За законом Біо-Савара
де
—
магнітна
індукція в точці
М на відстані r від прямолінійного
провідника із струмом I (мал. 1); k —
коефіцієнт пропорційності, величина і
розмірність якого залежать від вибору
системи одиниць, r — радіус-вектор.
У СІ
,
де
-
магнітна
стала.
У гаусовій системі одиниць
,
де - швидкість світла.
[Ред.] Магнітне поле навколо контура довільної форми
Закон Біо-Савара експериментально відкрили 1820 Жан-Батіст Біо і Фелікс Савар. Цей закон є частковим випадком загальнішого закону Біо-Савара-Лапласа, сформульованого П'єром-Симоном Лапласом 1820 на підставі матеріалів з численних дослідів Біо і Савара.
Мал. 2.
За цим законом величина магнітної індукції в точці М на відстані r від елемента М провідника довільної форми визначається формулою:
де α — кут між напрямом струму I і напрямом радіуса-вектора r (мал. 2). Повна магнітна індукція B, створена струмом у провіднику довільної форми і скінченної довжини, дорівнює геометричній сумі елементарних індукцій. У векторній формі це записується як:
Наприклад, інтегруванням одержують формули для магнітної індукції навколо нескінченно довгого прямолінійного провідника зі струмом, наведену вище. Аналогічно можна отримати формулу Біо—Савара для магнітного поля в центрі колового струму
.
Магнітна
індукція поля в середній частині дуже
довгого соленоїда
та
ін. Напрям магнітної індукції в усіх
випадках визначається за правилом
ґвинта.
Магнітні властивості речовини. Діа-, пара-, феромагнетики. Застосування магнітних матеріалів.
Мета уроку: ознайомити учнів з природою магнетизму і з магнітними властивостями постійних магнітів; розвивати індивідуальні здібності учнів; виховувати бажання отримувати знання.
Тип уроку: урок вивчення нового матеріалу.
Хід уроку.
І. Організаційний момент.
Оголошення теми і мети уроку.
ІІ. Пояснення нового матеріалу.
Магнітне
поле утворюється не тільки навколо
провідників із струмом, а й постійними
магнітами. Їх можна виготовляти тільки
з небагатьох речовин. Але всі речовини,
вміщені в магнітне поле, намагнічуються,
тобто самі утворюють магнітне поле.
Тому вектор магнітної індукції
в однорідному середовищі відрізняється
від індукції магнітного поля
в тій же частині простору у вакуумі.
Отже, значення магнітної індукції
залежить від середовища, в якому існує
магнітне поле, тобто магнітна індукція
характеризує магнітне поле з урахуванням
дії цього середовища.
Величина
,
що дорівнює
відношенню модуля магнітної індукції
поля в довільному середовищі до модуля
магнітної індукції
цього ж поля у вакуумі, характеризує
магнітні властивості цього середовища,
і її називають магнітною проникністю.
Матеріали, які в зовнішньому магнітному полі намагнічуються (тобто в них з'являється власне магнітне поле), називають магнетиками.
Причину, внаслідок якої тіла мають магнітні властивості, вперше встановив Ампер: магнітні властивості тіла можна пояснити струмами, які циркулюють у ньому. Ці струми утворюються внаслідок руху електронів в атомах. Якщо площини, у яких циркулюють ці струми, розміщено хаотично одна відносно одної, то дія струмів взаємно компенсується і ніяких магнітних властивостей тіло не виявляє. У намагніченому стані струми в тілі орієнтовані так, що їх дії додаються.
За магнітною проникністю і характером взаємодій з магнітним полем магнетики поділяють на діамагнетики, парамагнетики і феромагнетики.
Речовини, у яких m < 1, називають діамагнетиками. До діамагнетиків належить більшість газів (крім кисню), вода, вісмут, цинк, свинець, мідь, срібло, золото, сірка, віск, алмаз, багато органічних сполук. Якщо зовнішнього магнітного поля немає, магнітні моменти атомів діамагнетиків дорівнюють нулю. У магнітному полі в атомах з'являється магнітний момент, напрямлений проти зовнішнього поля.
Парамагнітні речовини втягуються магнітним полем; їх магнітна проникність більша за одиницю. Атоми парамагнетиків мають відмінні від нуля магнітні моменти. Парамагнетики підсилюють зовнішнє магнітне поле. До парамагнетиків належать кисень, марганець, хром, платина, алюміній, вольфрам, усі лужні й лужноземельні метали.
До феромагнетиків належать матеріали, які сильно взаємодіють з магнітним полем і магнітна проникність яких у певному температурному інтервалі значно більша за одиницю. Феромагнітні властивості мають тільки кристалічні тіла. У рідкому, або газоподібному стані феромагнетики стають парамагнітними. Феромагнетики мають окремі ділянки, атоми в яких мають однаково напрямлені магнітні моменти. У зовнішньому магнітному полі такі ділянки (їх називають доменами) орієнтуються однаково.
Магнітна проникність феромагнетиків у слабких полях дорівнює п'ять - шість тисяч, а в сильних - зменшується до кількох сотень. Якщо їх нагрівати вище від певної температури (точка Кюрі), вони втрачають свої властивості і стають парамагнетиками. Для заліза точка Кюрі становить 770 °С, нікелю - 360 °С, пермалою (сплав 70 % і 30 % ) - всього 70 °С.
Феромагнетики
Особливу групу речовин, що намагнічуються, утворюють феромагнетики (рис. 3а). Такі речовини, внесені в магнітне поле, під його дією намагнічуються так, що підсилюють зовнішнє магнітне поле, тобто магнітні силові лінії зовнішнього магнітного поля В і магнітного поля речовини мають один і той же напрям. Ці речовини намагнічуються дуже сильно (рис. 36) і зберігають власне магнітне поле після припинення дії зовнішнього поля (рис. 3в). Це явище називається залишковим намагнічуванням і лежить в основі утворення штучних магнітів (наприклад, магнітних стрілок) .
|
Діамагнетик |
Парамагнетик |
Феромагнетик |
проникливість, μ |
μ 1 |
μ≥ 1 |
μ>>1 |
2. Напрям магнітного поля |
Власне поле речовини напрямлене проти зовнішнього магнітного поля і послаблює його |
Напрям зовнішнього і власного поля речовини, яке виникає у результаті намагнічування збігаються |
Напрям зовнішнього і власного поля речовини, яке виникає у результаті намагнічування збігаються |
3. Речовини |
вода, переважна частина органічних сполук (вуглеводи і білки), алмаз, графіт, майже всі гази, деякі метали (вісмут, срібло, цинк, мідь, золото |
гази, лужні та лужно- земельні метали, алюміній, платина, вольфрам, хром, марганець, розчини солей заліза |
залізо, сталь, нікель, кольбат і сплави: пермалой, магніко, алніко |
Магнітом'які феромагнітні матеріали (хімічно чисте залізо, електротехнічна сталь та ін.), які майже втрачають намагніченість після видалення із зовнішнього поля, використовують в тих електротехнічних пристроях, у яких відбувається неперервне перемагнічування осердь, магнітопроводів та інших частин трансформаторів, генераторів змінного струму, електродвигунів. Магнітожорсткі матеріали (вуглецева сталь, хромиста сталь і спеціальні сплави) використовують здебільшого для виготовлення постійних магнітів.
Великого застосування набули в сучасній радіотехніці ферити - феромагнітні матеріали, що не проводять електричний струм. До них належать речовини, що є хімічними сполуками оксиду заліза з оксидами інших металів. Ферити використовують для виготовлення осердь котушок індуктивності, внутрішніх антен малогабаритних приймачів тощо.
Завдяки явищу гістерезису, яке полягає у властивості магніту зберігати "пам'ять" про минуле, став можливим запис звуку в магнітофонах і довільної інформації в довготривалій пам'яті ЕОМ.
Для звукозапису в магнітофонах і відеозапису у відеомагнітофонах використовують магнітні стрічки, що складаються з гнучкої основи з поліхлорвінілу чи інших речовин, на яку нанесено робочий шар у вигляді магнітного лаку, що складається з дуже дрібних голчастих частинок заліза чи іншого феромагнетика і зв'язувальних речовин.
Звук записується на стрічці за допомогою електромагніта. Магнітне поле електромагніта змінюється в такт зі звуковими коливаннями.
Під час відтворення звуку спостерігається зворотний процес. Намагнічена стрічка збуджує в магнітній головці електричні сигнали, які після підсилення поступають на динамік магнітофона.
Тонкі магнітні плівки складаються з шару феромагнітного матеріалу товщиною 0,03 - 10 мкм. Їх використовують в запам'ятовувальних пристроях електронно-обчислювальних машин. Інформація записується і відтворюється приблизно так само, як і на звичайному магнітофоні.
Магнітне поле і особливості його впливу на людину Магнітне поле — вид матерії, яка існує навколо рухомих електричне заряджених частинок речовини і здійснює їх взаємодію. Воно створюється рухомими електричними зарядами або змінним електричним полем. У промисловості широко застосовують магнітні пристрої (електромагніти, постійні магніти) — від слабких до гігантських у прискорювачах ядерних частинок, здатних створювати магнітне поле (МП). Крім того, МП може виникати і як супутній фактор в електротехнічних пристроях, через які надходить постійний електричний струм. Розрізняють МП постійне (ПМП), змінне низькочастотне (2-50 Гц) та імпульсне (ІМП). Найпоширенішими є технологічні процеси із застосуванням постійного МП. Постійне МП створюється постійним електричним струмом або речовинами, які мають властивості постійних магнітів. Магнітні властивості виявляються в усьому, що оточує людину, проте у більшості тіл — дуже неістотно. Сильні магнітні властивості мають мінерали, які належать до оксидів заліза й титану (магнетит, гематит, титаномагнетит, титаногематит) і мають особливу атомно-кристалічну структуру. Хімічні елементи з вираженими магнітними властивостями називаються феромагнетиками. До них належать залізо, нікель, кобальт та їхні сплави, які використовують для виготовлення постійних магнітів. Структура одного й того самого МП в різних точках різна. У точках, де силові лінії МП паралельні, його напруженість однакова. Таке МП називають однорідним. У неоднорідному МП силові лінії непара-лельні і напруженість поля у різних точках різна. Напруженість у точці МП тим більша, чим густіші в ній силові лінії. Існує кілька теорій намагнічування. Згідно з останньою теорією, магнетизм походить від електронів атомів, що здатні обертатися й рухаються замкнутими орбітами в атомах. Такі замкнуті струми утворюють МП, аналогічне полю витка з електричним струмом. ^
Джерела магнітних полів на виробництві
Взаємодія МП практично з усіма речовинами зумовила їх застосування в багатьох технологічних процесах. Здатність феромагнітних матеріалів до намагнічування використовують для виробництва постійних магнітів, запам'ятовуючих логічних пристроїв, в обчислювальній техніці тощо. Постійне МП істотно впливає на феромагнетики. На цьому грунтується застосування магнітів у підйомних кранах і магнітних сепараторах, а також електромагнітів у медицині. Магніти застосовують в електродвигунах і генераторах постійного струму, в електронно-оптичних приладах, магнетронах, пристроях електромагнітного захисту від іонізуючого випромінювання. Здатність МП до взаємодії з парамагнітними та діамагнітними речовинами використовують для магнітної обробки води, наприклад, для того, щоб запобігти утворенню накипу в котлах, для збагачення корисних копалин, у процесах ядерного магнітного резонансу (ЯМР) та електронного парамагнітного. Метод ЯМР використовують у медицині для діагностики та лікування хворих. У техніці розрізняють МП слабкі, середні, сильні та надсильні. Слабкі та середні МП застосовують в електро-, радіотехніці та електроніці, середні — у наукових дослідженнях (у прискорювачах заряджених частинок, камері Вільсона, іскровій камері, мас-спектрометрах, дослідженні дії МП на живі організми тощо), сильні — у фізиці твердого тіла, для дослідження феромагнетизму та антиферомагнетизму, для одержання наднизьких температур тощо. Надсильні МП застосовують у дослідженні властивостей речовин, процесів, що відбуваються в надрах планет і зірок. Впливу ПМП працівники зазнають при виготовленні постійних магнітів, складанні магнітних систем, монтажі пристроїв з магнітними деталями (генератори, двигуни постійного струму). Під час роботи на магнітних установках і з магнітними матеріалами робоче місце перебуває в зоні неоднорідних МП. Напруженість МП знижується з віддаленням від обладнання та магнітних матеріалів; на відстані до двох метрів від магнітних установок і до одного метра від постійних магнітів напруженість МП дуже неістотна. Зниженням напруженості МП пояснюється також її нерівномірність у робочій зоні, внаслідок чого різні ділянки тіла людини зазнають дії МП різної напруженості. Найбільшого впливу МП зазнають руки, набагато менше опромінюються груди, голова, живіт, нижні кінцівки. ^
Біологічна дія постійного магнітного поля на людину
Вплив ПМП на функціональний стан і здоров'я людини вивчений ще недостатньою мірою. Найчастіше від впливу ПМП у людини порушується функція нервової і серцево-судинної систем, а також функція вегетативної іннервації верхніх кінцівок (гіпергідроз долонь, "марму-ровість" і зниження температури шкіри, гіперстезія кінцівок за типом "рукавичок"). При капіляроскопії нігтьового ложа пальців верхніх кінцівок виявляються лабільність капілярів і схильність їх до спазму. Розрізняють первинні (фізико-хімічні), кібернетичні та загальні механізми біологічної дії ПМП. Основними фізико-хімічними механізмами є зміна траєкторії заряду, що рухається в МП, зміщення або обертання анізотропних частинок, що мають різну магнітну сприйнятливість, хімічна поляризація електронів і ядер, що змінює кінетику хімічних реакцій. Виявляють кібернетичні механізми шляхом реєстрації початкових реакцій біосистеми під дією на неї ПМП. Встановлено, що порогові межі МП, які викликають біологічні ефекти, становлять частки або одиниці ампера на 1 м МП при застосуванні різних тестів; неоднорідні ПМП викликають більші зміни за інших рівних умов; переривчаста дія ПМП викликає значнішу реакцію біосистеми, ніж непереривчаста. Напрям, величина і вираженість відповідних реакцій біосистеми більшою мірою залежать від її початкового стану (період розвитку хвороби, психічний стан, зовнішні впливи інших факторів), ніж від показників ПМП. При цьому зауважимо, що ПМП навіть дуже високої напруженості не знищує біосистеми. Загальні біологічні механізми не мають електромагнітної специфіки і їх потрібно розглядати із загальних фізіологічних позицій. У процесі еволюції тваринний світ і людина пристосовувалися до впливу ЕМП певного діапазону. Якщо напруженість ПМП перевищує фонову напруженість геомагнітного поля Землі, то відбувається прискорення перебігу окремих фізіологічних і біохімічних процесів. Тому доцільно визначити біологічну активність цього нового виробничого фактора. Було виявлено, що під впливом ПМП великої напруженості змінюється хімічний склад сироватки крові, а в разі тривалої дії ПМП відбуваються фазові зміни морфологічної картини крові та кісткового мозку, активізується протизсідальна система крові, знижуються тромбоутворення, імунологічна реактивність за показниками фагоцитозу, антитілоутворення. Відомий вплив ПМП на функціональне співвідношення процесів збудження та гальмування у структурах мозку — посилюються процеси збудження в корі великих півкуль, мозочку, гіпоталамусі. Внаслідок впливу ПМП підвищується вміст адреналіну та норадреналіну в крові й кортикостерону у тканинах надниркових залоз. Зміна рівня гормонів, у свою чергу, призводить до порушень функції серцево-судинної системи. Серцево-судинні порушення виявляються у зміні частоти серцевих скорочень, глухості серцевих тонів, лабільності артеріального тиску, відхиленні від норми ритму та провідності, зниженні функціональної здатності міокарду. ^
Заходи профілактики негативного впливу магнітного поля
Профілактика негативного впливу МП на людину зводиться до захисту її шляхом віддалення робочих місць від зони дії МП і екранування. Магнітні матеріали та пристрої в загальних приміщеннях слід розміщувати на відстані 1,5-2 м від робочих місць. На такій самій відстані необхідно розміщувати магнітні установки. Оскільки робота в зоні МП часто пов'язана з дією додаткових факторів виробничого середовища, наприклад з виділенням теплоти, слід передбачати термоізоляцію електропечей, встановлювати вентиляцію у приміщеннях, де відбувається термічна обробка, а також розміщувати біля люків печей екрани з оглядовим склом. В окремих випадках потрібно застосовувати пилопригнічення. Особи, які працюють на магнітних установках і з магнітними матеріалами, підлягають запобіжним і періодичним медичним оглядам один раз на два роки. В огляді мають брати участь лікар-терапевт, невропатолог і, за показаннями, отоларинголог, окуліст і рентгенолог. Медичними протипоказаннями до роботи в умовах дії магнітного поля є органічні захворювання серця і судин, центральної та периферичної нервової систем, особливо вегетативні поліневрити, виражені ендокринні захворювання. 4.6. Ультрафіолетове, видиме і лазерне випромінювання в робочих зонах
