- •Вопрос № 1. Тепловые сети, их назначение, классификация. Методы расчета.
- •Вопрос № 2. Методы регулирования отпуска теплоты из систем централизованного теплоснабжения.
- •Вопрос № 3. Методика гидравлического расчета тепловых сетей.
- •Вопрос № 4. Энергетическое топливо. Технические характеристики и элементарный состав.
- •Вопрос № 5. Классификация и параметры паровых и водогрейных котельных.
- •Вопрос 6. Тепловая схема паровой котельной. Расчет тепловых схем котельных.
- •Вопрос №7. Тепломассообменные аппараты и установки. Классификация теплообменных аппаратов.
- •Вопрос № 8. Этапы теплового расчета рекуперативного теплообменного аппарата (на примере).
- •Вопрос № 9. Вторичные энергоресурсы. Утилизация высокотемпературных тепловых ресурсов. Котлы-утилизаторы.
- •Вопрос № 10. Классификация паровых турбин: по назначению, конструктивному выполнению, принципу действия, принципу реализации частичных нагрузок, давлению.
- •Вопрос № 11. Парогазовые установки. Основные типы пту. Количественные показатели термодинамических циклов пгу.
- •Вопрос № 12. Классификация гту и комбинированных гту.
- •Вопрос № 16.
- •Вопрос №17. Характеристика компрессора. Граница устойчивой работы. Помпаж.
- •Вопрос № 18. Камеры сгорания гту. Токсичность продуктов сгорания.
- •Вопрос №20. Гту с регенерацией тепла.
- •Вопрос №26. Поясните понятие об элементарной ступени осевой турбины. Изобразите план скоростей для такой турбины и укажите характерные углы определяющие направление движения потока.
- •Вопрос №28.
- •Вопрос №29. Основные нагрузки, действующие на узлы гтд. Силы инерции, действующие на узлы гтд.
- •Вопрос № 30. Типы роторов осевых компрессоров гтд и их сравнительная характеристика.
- •Вопрос № 31. Конструкция центробежного компрессора гтд.
- •Конструкционные материалы для цбк
- •Вопрос № 32. Охлаждение рабочих и сопловых лопаток турбины.
- •Вопрос № 33. Рабочие лопатки осевых компрессоров. Основные требования и конструкционные материалы.
- •Вопрос № 34. Рабочие лопатки газовых турбин, основные требования, конструкционные материалы.
Вопрос № 18. Камеры сгорания гту. Токсичность продуктов сгорания.
В газотурбинных установках процесс подвода тепла к рабочему телу агрегатно отделен от процессов сжатия и расширения и осуществляется в специальных камерах сгорания, которые предназначены для полного и эффективного сжигания топливного газа в потоке воздуха, поступающего из осевого компрессора или регенератора с целью получения продуктов сгорания с температурой, обусловленной жаростойкостью лопаток и дисков газовой турбины.
Камеры сгорания ГТУ предназначены для полного сжигания топлива в потоке воздуха, поступающего из осевого компрессора или регенератора, с целью получения продуктов сгорания с температурой, обусловленной жаростойкостью лопаток и дисков газовой турбины. Камера сгорания должна удовлетворять следующим требованиям: обеспечение высокой полноты сгорания топлива, надежность и плавность запуска в работу, устойчивость горения в широком диапазоне изменений давления, скорости потока воздуха, малые потери давления по тракту камеры сгорания, низкая стоимость конструкции.
В стационарных приводных ГТУ средней и большой мощности применяют камеры сгорания двух типов - выносные и встроенные.
Направление движения воздуха во встроенных камерах сгорания может быть различным: прямоточным, противоточным по отношению к направлению потока воздуха в компрессоре или угловым.
Основными элементами камеры сгорания являются: корпус, жаровая труба, горелочные устройство и смеситель.
К камерам сгорания ГТУ предъявляются высокие требования по конструктивному исполнению и особенно по организации рабочего процесса.
Под кпд камеры сгорания принято понимать отношение теплоты, переданной воздуху при сжигании топлива, к общему количеству теплоты, выделяемой при полном сжигании того же количества топлива.
Кпд современных камер сгорания, работающих на газообразном топливе, достигает 0,97-0,98.
Минимальные потери от химического недожога топлива достигаются двумя путями: в результате высокой турбулизации потока в зоне горения и разделением поступающего в камеру сгорания воздуха на два потока.
Разнообразием ГТУ, устанавливаемых на газопроводах, обусловлено и разнообразие типов камер сгорания, применяемых в них. Камеры сгорания классифицируют следующим образом: по включению в конструкцию ГТУ - встроенные и выносные, по конструктивному выполнению - секционные, трубчато-кольцевые, кольцевые индивидуальные; по взаимному направлению воздуха и продуктов сгорания - прямоточные и противоточные; по числу горелок (регистров) - одногорелочные, много горелочные с непрерывным кольцевым горелочным устройством.
В настоящее время совершенствование узла камеры сгорания идет по пути сокращения длины камеры и обеспечения ее экологической чистоты и минимального дымления.
Дым – это несгоревшие частички углерода, для образования которых достаточно, чтобы топливо-воздушная смесь была богаче в 1,5-2 раза, чем стехиометрическая. Дымление двигателя нежелательно как с коммерческой, так и с военной точки зрения. С коммерческой – дым загрязняет атмосферу и, будучи видимым, неблагоприятно воздействует на психику пассажиров. С военной – повышает возможность визуального обнаружения летательного аппарата противником.
Перспективным методом снижения дымности камеры сгорания является улучшение конструкции, направленное на устранение зон богатой смеси. В таком улучшении нуждается та часть камеры, в которой воздух и топливо поступают в первичную зону. Для уменьшения вероятности образования зон с богатой смесью, в первичную зону может подводиться дополнительный воздух (около 5%) через специальные направляющие отверстия и трубы, что позволяет ему проникнуть в ядро потока.
Возможно и применение конструкции с предварительным испарением топлива (Д-36, Д-136) и форсунок с аэрацией (Р-29).
В настоящее время камеры с малым дымлением могут считаться технически освоенными, однако доводка камеры с целью уменьшения дымления не должна ухудшать ее остальных эксплуатационных характеристик – надежности розжига при запуске, устойчивости горения, КПД, температурного поля, ресурса и др.
К загрязняющим атмосферу газообразным веществам, образующихся при сжигании топлива в камерах сгорания ГТУ следует отнести оксиды азота (в пересчете на NO2) , серы SO2 , окислов углерода СО, метана СН4 и других летучих веществ.
Опыт эксплуатации показывает, что выбросы вредных веществ в атмосферу при пуске, работе и остановках агрегатов в общей сложности достигает 12-15 млн м3/год.
Для окружающей среды основное значение имеют разовая и среднесуточная предельно допустимые концентрации (ПДК) вредных веществ, поступающих в атмосферу. Максимальная разовая и среднесуточная концентрации, например, диоксида азота NO2 составляет соответственно, мг/м3 : 0.085 и 0,040; оксида азота NO –0,60 и 0,060; оксида углерода СО – 5,0 и 1,0; сернистого углерода SO2 - 0,5 и 0,05 и т. д. Приведенные данные свидетельствуют, что наиболее высокой токсичностью обладают диоксид и оксид азота (токсичность NO2 примерно в 7 раз выше токсичности NO), которые совместно обозначаются как NOx.
Образование вредных выбросов при сжигании топлива в камере сгорания и, прежде всего, оксидов азота, как наиболее опасных для окружающей среды, осуществляется по трем основным направлениям: « термические», «быстрые» и «топливные» (Рис. 4.2) [18].
«Термические» оксиды азота образуются непосредственно в факеле горения топлива в результате высокотемпературной цепной реакции окисления атмосферного азота свободным кислородом с выделением теплоты, формальная кинетика которой описывается уравнением:
N2 + O2 2NO + q (4.21)
«Быстрые» оксиды азота NOx обычно образуются при температуре ниже 1000 К на начальном участке фронта пламени: их выход при горении природного газа составляет примерно 100-120 мг/м3 и практически не зависит от температуры горения и от коэффициента избытка воздуха. Образующиеся в начале зоны горения оксиды азота свидетельствуют о малом времени их образования, в связи с чем они и получили наименование «быстрых». При температурах Т 300 К скорость их образования значительно выше, чем скорость образования «термических» NO.
«Топливные» оксиды NOx образуются из азотосодержащих соединений топлива на начальном участке факела горения одновременно с «быстрыми» оксидами, но до появления «термических» NO. Образование «топливных» оксидов начинается уже при температурах 900-1000 К и быстро увеличивается с повышением температуры горения.
