- •Системный анализ и проектирование компьютерных информационных систем
- •1Введение в системный анализ
- •1.1Системный анализ как научная дисциплина
- •1.2Компьютерная техника и системный анализ
- •1.3Система и ее свойства
- •Свойства системы
- •1.3.1Структура и иерархия систем
- •1.3.2Модульное строение системы
- •1.3.3Состояние системы и процессы в системе
- •1.3.4Целенаправленные системы и управление
- •Управление системами
- •1.4Принципы системного подхода
- •Принцип конечной цели
- •Принцип единства и связи
- •Принцип модульного построения
- •Принцип иерархии
- •Принцип функциональности
- •Принцип развития
- •Принцип децентрализации
- •Принцип неопределенности
- •Дополнительные принципы системного подхода
- •Практическое использование принципов системного подхода
- •2Информационные системы. Жизненный цикл информационной системы
- •2.1Определение информационной системы
- •Информация, данные, знания
- •Информационная система
- •2.2Классификация информационных систем
- •Классификация по типу хранимых данных
- •Классификация по степени автоматизации информационных процессов
- •Классификация по характеру обработки данных
- •Классификация по сфере применения
- •Классификация по уровню управления
- •Классификация по способу организации
- •2.3Жизненный цикл информационной системы
- •2.3.1Системный анализ
- •Определение требований
- •Оценка осуществимости
- •Оценка риска
- •Построение логической модели
- •Построение прототипа
- •2.3.2Проектирование
- •2.3.3Реализация
- •2.3.4Тестирование
- •2.3.5Эксплуатация
- •2.4Модели жизненного цикла информационной системы
- •2.4.1Каскадная модель жизненного цикла информационной системы
- •Основные достоинства каскадной модели
- •Недостатки каскадной модели
- •2.4.2Спиральная модель жизненного цикла информационной системы
- •Преимущества спиральной модели
- •3Методологии и технологии проектирования информационных систем
- •3.1Общие требования к методологиям и технологиям
- •Технологическую операцию проектирования представим:
- •3.2Стандарты организации жизненного цикла информационных систем
- •Стандарт проектирования должен устанавливать:
- •Стандарт оформления проектной документации должен устанавливать:
- •Стандарт интерфейса пользователя должен устанавливать:
- •3.3Методология быстрой разработки приложений rad
- •Фаза анализа и планирования требований
- •Фаза проектирования
- •Фаза построения
- •Фаза внедрения
- •Особенности и ограничения применения методологии rad.
- •Основные принципы методологии rad:
- •3.4Структурный подход к проектированию информационных систем
- •Структурный подход
- •Структурный анализ
- •Средства структурного анализа
- •4Методология функционального моделирования sadt (стандарт idef0)
- •4.1Анализ предметной области и принципы функционального моделирования по методологии sadt (стандарт оформления idef0)
- •Субъект моделирования
- •Цель моделирования
- •Точка зрения на модель
- •Модели as-is и то-ве
- •Принципы моделирования
- •4.2Состав функциональной модели sadt Типы диаграмм sadt-модели
- •Контекстная диаграмма
- •Диаграммы декомпозиции
- •Диаграммы дерева узлов
- •4.3Элементы контекстной диаграммы модели sadt Работа
- •Граничные стрелки
- •Контекстная диаграмма
- •4.4Элементы диаграммы декомпозиции модели sadt Работы
- •Миграция граничных стрелок и icom-коды
- •Внутренние стрелки
- •Разветвляющиеся и сливающиеся стрелки
- •4.5Иерархия диаграмм модели и диаграмма дерева узлов Иерархия диаграмм и контроль граничных стрелок
- •Туннелирование стрелок
- •Нумерация блоков и диаграмм
- •Диаграмма дерева узлов
- •4.6Рекомендации по рисованию диаграмм
- •4.7Проверка достоверности модели sadt
- •4.8Пример моделирования информационной системы с помощью методологии sadt (стандарт idef0)
- •Определение предметной области
- •Выбор цели
- •Выбор точки зрения
- •Построение контекстной диаграммы
- •Построение диаграммы декомпозиции а0
- •Выбор блока для декомпозиции следующего уровня
- •Построение диаграммы декомпозиции а2
- •Построение диаграммы декомпозиции а1
- •Окончание декомпозиции
- •Построение диаграммы дерева узлов
- •5Методологии получения количественных оценок функциональных моделей
- •5.1Цели проведения функционально-стоимостного анализа
- •5.2Построение фса-модели на базе idef0-модели
- •5.3Пример проведения функционально-стоимостного анализа с помощью методологии фса
- •6Методология последовательного выполнения процессов workflow (стандарт idef3)
- •6.1Базовые элементы модели idef3
- •Единицы работы
- •Перекрестки
- •Объект ссылки
- •6.2Иерархия диаграмм модели idef3 Контекстная диаграмма
- •Диаграммы декомпозиции
- •Нумерация работ и диаграмм
- •6.3Временные диаграммы активизации работ
- •6.4Пример применения методологии последовательного выполнения работ idef3
- •7Методология моделирования диаграмм потоков данных dfd
- •7.1Базовые элементы модели dfd
- •Процессы
- •Внешние сущности
- •Хранилища данных
- •Потоки данных
- •7.2Иерархия диаграмм потоков данных dfd к онтекстная диаграмма
- •Диаграмма декомпозиции
- •Нумерация работ и диаграмм
- •8Моделирование данных
- •8.12.1. Управление данными как ресурсами
- •8.22.2. Концепция трех схем
- •8.32.3. Цели моделирования данных
- •8.42.4. Idef1x-подход
- •8.53. Синтаксис и семантика idef1x
- •1. Сущности
- •8.5.13.1. Сущности
- •8.5.23.2. Отношения связи
- •8.5.33.3. Отношения категоризации
- •8.5.43.4. Неспецифические отношения
- •8.5.53.5. Атрибуты
- •8.5.63.6. Первичные и альтернативные ключи
- •8.5.73.7. Внешние ключи
- •8.64. Процедуры моделирования
- •8.6.14.1. Стадия 0 - начало работы над проектом
- •4.1.1. Определение цели моделирования
- •4.1.2. Разработка плана моделирования
- •4.1.3. Организационная структура коллектива разработчиков
- •4.1.4. Сбор исходной информации
- •4.1.5. Авторские соглашения
- •8.6.24.2. Стадия 1 - определение сущностей
- •4.2.1. Идентификация сущностей
- •4.2.2. Определение сущностей
- •8.6.34.3. Стадия 2 - определение отношений
- •4.3.1. Установление связанных сущностей
- •4.3.2. Определение отношений
- •4.3.3. Построение диаграмм уровней сущностей
- •8.6.44.4. Стадия 3 - определения ключей
- •4.4.1. Разрешение неспецифических отношений
- •4.4.2. Изображение функциональных точек зрения
- •4.4.3. Определение ключевых атрибутов
- •4.4.4. Миграция ключей
- •4.4.5. Проверка правильности ключей и отношений
- •4.4.6. Определение ключевых атрибутов
- •4.4.7. Изображение результатов стадии 3
- •8.6.54.5. Стадия 4 - определение атрибутов
- •4.5.1. Идентификация неключевых атрибутов
- •4.5.2. Определение владельцев атрибутов
- •4.5.3. Определение атрибутов
- •4.5.4. Детализация модели
- •4.5.5. Представление результатов стадии 4
- •8.75. Документирование и верификация
- •8.7.15.1. Введение
- •8.7.25.2. Idef1x-папка
- •8.7.35.3. Стандартные бланки
- •8.7.45.4. Процедура сквозного анализа idef-модели
- •8.8Приложение а
- •8.9Инфологическое проектирование
- •8.9.1Сущности и атрибуты
- •1.2.2. Связи
- •1.2.3. Формализация связей
- •1.2.4.Развитые элементы er-модели
- •9Сравнение существующих методик
- •Объектно-ориентированная методика
1.3Система и ее свойства
Понятие системы вошло в обиход в начале ХХ века, но долгое время использовалось лишь в самом общем смысле. Развитие представлений о взаимосвязи различных отраслей науки, формирование идей кибернетики сделали необходимым строгое определение системы.
Системой называется упорядоченная совокупность взаимодействующих элементов, объединенных определенными связями, предназначенная для достижения заданной цели и достигающая ее наилучшим (по возможности) образом.
Подчеркивается единство трех основных составляющих понятий системы – элементов, связей, операций. Достоинство данного определения – в простоте и раскрытии сущности систем, недостаток – в отсутствии однозначности (произвольно взятый элемент системы сам является системой, а произвольно взятая система может рассматриваться как элемент более крупной системы).
Элементом назовем некоторый объект (материальный, энергетический, информационный), обладающий рядом важных для нас свойств, но внутреннее строение (содержание) которого не является в данном случае целью рассмотрения.
Связью назовем важный для целей рассмотрения обмен между элементами веществом, энергией, информацией. Частным случаем связи выступает воздействие.
Свойства системы
Целостность системы. Элементы системы функционируют во времени взаимосвязано как единое целое. Каждый из них работает ради достижения единой цели, стоящей перед всей системой. Система не должна рассматриваться как простая сумма элементов. Нужно учитывать эффект взаимодействия элементов, благодаря которому некоторые свойства накапливаются, усиливаются и в совокупности может появиться новое свойство, присущее всей системе.
Эмерджентность системы – способность сложной системы проявлять общесистемные свойства и порождать системный эффект, не присущий отдельным элементам системы.
Целевое назначение системы. Для какой цели функционирует система, какие перед ней ставятся задачи.
Примеры систем: солнечная система, живой организм (биологическая система), экологическая система, транспортная система, система линейных алгебраических уравнений, язык (языковая система), система Станиславского (театральная система), система химических элементов (таблица Менделеева), автоматизированная система управления технологическим процессом.
Большой системой назовем систему, включающую значительное число однотипных элементов и однотипных связей.
Сложной системой назовем систему, состоящую из элементов разных типов и обладающую разнородными связями между ними.
Большой, но не сложной с точки зрения механики системой является собранная из стержней стрела крана или, например, труба газопровода. Элементами последней будут ее участки между сварными швами или опорами. Для расчетов на прогиб элементами газопровода, скорее всего, будут считаться относительно небольшие (порядка метра) участки трубы. Так поступают в известном методе конечных элементов. Связь в данном случае имеет силовой (энергетический) характер – каждый элемент действует на соседний.
Различие между большой системой и сложной системой условно. Так, корпуса ракет или судов, которые, на первый взгляд, однородны, обычно относят к сложной системе – из-за наличия переборок разного вида, усилителей, слоистой конструкции. Типичными примерами сложных систем являются судно, самолет, ракета, системы управления ими, электронно-вычислительная машина, транспортная сеть города и многое другое.
В настоящее время важным классом сложных систем выступают так называемые автоматизированные системы. Слово «автоматизированный» указывает на участие человека, использование его активности внутри системы при сохранении значительной роли технических средств. Так, цех, участок, сборка могут быть как автоматизированными, так и автоматическими («цех-автомат»). Для сложной системы автоматизированный режим считается более предпочтительным. Например, посадка самолета выполняется при участии человека, а автопилот обычно используется лишь на относительно простых движениях. Также типична ситуация, когда решение, выработанное техническими средствами, утверждается к исполнению человеком.
Итак, автоматизированной системой называется сложная система с определяющей ролью элементов двух типов в виде:
технических средств;
действий человека.
