- •Системный анализ и проектирование компьютерных информационных систем
- •1Введение в системный анализ
- •1.1Системный анализ как научная дисциплина
- •1.2Компьютерная техника и системный анализ
- •1.3Система и ее свойства
- •Свойства системы
- •1.3.1Структура и иерархия систем
- •1.3.2Модульное строение системы
- •1.3.3Состояние системы и процессы в системе
- •1.3.4Целенаправленные системы и управление
- •Управление системами
- •1.4Принципы системного подхода
- •Принцип конечной цели
- •Принцип единства и связи
- •Принцип модульного построения
- •Принцип иерархии
- •Принцип функциональности
- •Принцип развития
- •Принцип децентрализации
- •Принцип неопределенности
- •Дополнительные принципы системного подхода
- •Практическое использование принципов системного подхода
- •2Информационные системы. Жизненный цикл информационной системы
- •2.1Определение информационной системы
- •Информация, данные, знания
- •Информационная система
- •2.2Классификация информационных систем
- •Классификация по типу хранимых данных
- •Классификация по степени автоматизации информационных процессов
- •Классификация по характеру обработки данных
- •Классификация по сфере применения
- •Классификация по уровню управления
- •Классификация по способу организации
- •2.3Жизненный цикл информационной системы
- •2.3.1Системный анализ
- •Определение требований
- •Оценка осуществимости
- •Оценка риска
- •Построение логической модели
- •Построение прототипа
- •2.3.2Проектирование
- •2.3.3Реализация
- •2.3.4Тестирование
- •2.3.5Эксплуатация
- •2.4Модели жизненного цикла информационной системы
- •2.4.1Каскадная модель жизненного цикла информационной системы
- •Основные достоинства каскадной модели
- •Недостатки каскадной модели
- •2.4.2Спиральная модель жизненного цикла информационной системы
- •Преимущества спиральной модели
- •3Методологии и технологии проектирования информационных систем
- •3.1Общие требования к методологиям и технологиям
- •Технологическую операцию проектирования представим:
- •3.2Стандарты организации жизненного цикла информационных систем
- •Стандарт проектирования должен устанавливать:
- •Стандарт оформления проектной документации должен устанавливать:
- •Стандарт интерфейса пользователя должен устанавливать:
- •3.3Методология быстрой разработки приложений rad
- •Фаза анализа и планирования требований
- •Фаза проектирования
- •Фаза построения
- •Фаза внедрения
- •Особенности и ограничения применения методологии rad.
- •Основные принципы методологии rad:
- •3.4Структурный подход к проектированию информационных систем
- •Структурный подход
- •Структурный анализ
- •Средства структурного анализа
- •4Методология функционального моделирования sadt (стандарт idef0)
- •4.1Анализ предметной области и принципы функционального моделирования по методологии sadt (стандарт оформления idef0)
- •Субъект моделирования
- •Цель моделирования
- •Точка зрения на модель
- •Модели as-is и то-ве
- •Принципы моделирования
- •4.2Состав функциональной модели sadt Типы диаграмм sadt-модели
- •Контекстная диаграмма
- •Диаграммы декомпозиции
- •Диаграммы дерева узлов
- •4.3Элементы контекстной диаграммы модели sadt Работа
- •Граничные стрелки
- •Контекстная диаграмма
- •4.4Элементы диаграммы декомпозиции модели sadt Работы
- •Миграция граничных стрелок и icom-коды
- •Внутренние стрелки
- •Разветвляющиеся и сливающиеся стрелки
- •4.5Иерархия диаграмм модели и диаграмма дерева узлов Иерархия диаграмм и контроль граничных стрелок
- •Туннелирование стрелок
- •Нумерация блоков и диаграмм
- •Диаграмма дерева узлов
- •4.6Рекомендации по рисованию диаграмм
- •4.7Проверка достоверности модели sadt
- •4.8Пример моделирования информационной системы с помощью методологии sadt (стандарт idef0)
- •Определение предметной области
- •Выбор цели
- •Выбор точки зрения
- •Построение контекстной диаграммы
- •Построение диаграммы декомпозиции а0
- •Выбор блока для декомпозиции следующего уровня
- •Построение диаграммы декомпозиции а2
- •Построение диаграммы декомпозиции а1
- •Окончание декомпозиции
- •Построение диаграммы дерева узлов
- •5Методологии получения количественных оценок функциональных моделей
- •5.1Цели проведения функционально-стоимостного анализа
- •5.2Построение фса-модели на базе idef0-модели
- •5.3Пример проведения функционально-стоимостного анализа с помощью методологии фса
- •6Методология последовательного выполнения процессов workflow (стандарт idef3)
- •6.1Базовые элементы модели idef3
- •Единицы работы
- •Перекрестки
- •Объект ссылки
- •6.2Иерархия диаграмм модели idef3 Контекстная диаграмма
- •Диаграммы декомпозиции
- •Нумерация работ и диаграмм
- •6.3Временные диаграммы активизации работ
- •6.4Пример применения методологии последовательного выполнения работ idef3
- •7Методология моделирования диаграмм потоков данных dfd
- •7.1Базовые элементы модели dfd
- •Процессы
- •Внешние сущности
- •Хранилища данных
- •Потоки данных
- •7.2Иерархия диаграмм потоков данных dfd к онтекстная диаграмма
- •Диаграмма декомпозиции
- •Нумерация работ и диаграмм
- •8Моделирование данных
- •8.12.1. Управление данными как ресурсами
- •8.22.2. Концепция трех схем
- •8.32.3. Цели моделирования данных
- •8.42.4. Idef1x-подход
- •8.53. Синтаксис и семантика idef1x
- •1. Сущности
- •8.5.13.1. Сущности
- •8.5.23.2. Отношения связи
- •8.5.33.3. Отношения категоризации
- •8.5.43.4. Неспецифические отношения
- •8.5.53.5. Атрибуты
- •8.5.63.6. Первичные и альтернативные ключи
- •8.5.73.7. Внешние ключи
- •8.64. Процедуры моделирования
- •8.6.14.1. Стадия 0 - начало работы над проектом
- •4.1.1. Определение цели моделирования
- •4.1.2. Разработка плана моделирования
- •4.1.3. Организационная структура коллектива разработчиков
- •4.1.4. Сбор исходной информации
- •4.1.5. Авторские соглашения
- •8.6.24.2. Стадия 1 - определение сущностей
- •4.2.1. Идентификация сущностей
- •4.2.2. Определение сущностей
- •8.6.34.3. Стадия 2 - определение отношений
- •4.3.1. Установление связанных сущностей
- •4.3.2. Определение отношений
- •4.3.3. Построение диаграмм уровней сущностей
- •8.6.44.4. Стадия 3 - определения ключей
- •4.4.1. Разрешение неспецифических отношений
- •4.4.2. Изображение функциональных точек зрения
- •4.4.3. Определение ключевых атрибутов
- •4.4.4. Миграция ключей
- •4.4.5. Проверка правильности ключей и отношений
- •4.4.6. Определение ключевых атрибутов
- •4.4.7. Изображение результатов стадии 3
- •8.6.54.5. Стадия 4 - определение атрибутов
- •4.5.1. Идентификация неключевых атрибутов
- •4.5.2. Определение владельцев атрибутов
- •4.5.3. Определение атрибутов
- •4.5.4. Детализация модели
- •4.5.5. Представление результатов стадии 4
- •8.75. Документирование и верификация
- •8.7.15.1. Введение
- •8.7.25.2. Idef1x-папка
- •8.7.35.3. Стандартные бланки
- •8.7.45.4. Процедура сквозного анализа idef-модели
- •8.8Приложение а
- •8.9Инфологическое проектирование
- •8.9.1Сущности и атрибуты
- •1.2.2. Связи
- •1.2.3. Формализация связей
- •1.2.4.Развитые элементы er-модели
- •9Сравнение существующих методик
- •Объектно-ориентированная методика
Классификация по сфере применения
По сфере применения информационные системы делятся на:
системы организационного управления;
системы управления технологическими процессами;
системы автоматизированного проектирования;
интегрированные (корпоративные) информационные системы.
Информационные системы организационного управления предназначены для автоматизации функций управленческого персонала как промышленных предприятий, так и непромышленных объектов (гостиниц, банков, магазинов и пр.).
Основными функциями подобных систем являются: оперативный контроль и регулирование, оперативный учет и анализ, перспективное и оперативное планирование, бухгалтерский учет, управление сбытом, снабжением и другие экономические и организационные задачи.
Информационные системы управления технологическими процессами служат для автоматизации функций производственного персонала по контролю и управлению производственными операциями. В таких системах обычно предусматривается наличие развитых средств измерения параметров технологических процессов (температуры, давления, химического состава и т.п.), процедур контроля допустимости значений параметров и регулирования технологических процессов.
Информационные системы автоматизированного проектирования предназначены для автоматизации функций инженеров-проектировщиков, конструкторов, архитекторов, дизайнеров при создании новой техники или технологии. Основными функциями подобных систем являются: инженерные расчеты, создание графической документации, создание проектной документации, моделирование проектируемых объектов.
Интегрированные (корпоративные) информационные системы используются для автоматизации всех функций фирмы и охватывают весь цикл работ от планирования деятельности до сбыта продукции. Они включают в себя ряд модулей (подсистем), работающих в едином информационном пространстве и выполняющих функции поддержки соответствующих направлений деятельности.
Классификация по уровню управления
В зависимости от уровня управления бывают:
системы оперативного уровня;
функциональные системы;
стратегические системы.
Информационная система оперативного уровня поддерживает исполнителей, обрабатывая данные о сделках и событиях (счета, накладные, зарплата, кредиты, поток сырья и материалов). Информационная система оперативного уровня является связующим звеном между фирмой и внешней средой. Задачи, цели, источники информации и алгоритмы обработки на оперативном уровне заранее определены и в высокой степени структурированы.
Информационные системы специалистов поддерживают работу с данными и знаниями, повышают продуктивность и производительность работы инженеров и проектировщиков. Задача подобных информационных систем – интеграция новых сведений в организацию и помощь в обработке бумажных документов.
Информационные системы уровня менеджмента – используются работниками среднего управленческого звена для мониторинга, контроля, принятия решений и администрирования. Основные функции этих информационных систем:
сравнение текущих показателей с прошлыми;
составление периодических отчетов за определенное время, а не выдача отчетов по текущим событиям, как на оперативном уровне;
обеспечение доступа к архивной информации и т.д.
Стратегическая информационная система – это компьютерная информационная система, обеспечивающая поддержку принятия решений по реализации перспективных стратегических планов развития организации.
Информационные системы стратегического уровня помогают высшему звену управленцев решать неструктурированные задачи, осуществлять долгосрочное планирование. Основная задача – сравнение происходящих во внешнем окружении изменений с существующим потенциалом фирмы. Они призваны создать общую среду компьютерной телекоммуникационной поддержки решений в неожиданно возникающих ситуациях. Используя самые совершенные программы, эти системы способны в любой момент предоставить информацию из многих источников. Некоторые стратегические системы обладают ограниченными аналитическими возможностями.
