- •Фогель ф., Мотульски а. Генетика человека: в 3-х т. Т. 2: Пер. С англ. – м.: Мир, 1990. – 378 с.
- •Ф. Фогель, а.Мотульски генетика человека
- •4. Действие генов
- •4.1. Развитие менделевской парадигмы
- •4.2. Гены и ферменты
- •4.2.1. Гипотеза «один ген – один фермент»
- •Модель Бидла и Татума. Статья этих исследователей начиналась так:
- •4.2.2. Гены и ферменты у человека: современный уровень знаний
- •4.2.2.1. Обнаружение и анализ ферментативных нарушений
- •4.2.2.2. Типичные нарушения функций ферментов: ферменты эритроцитов
- •4.2.2.3 Мукополисахаридозы
- •4.2.2.5. Влияние кофакторов на активность ферментов [182]
- •4.2.2.6. Сцепленная с х-хромосомой недостаточность гипоксантин-гуанин—фосфорибозилтрансферазы (30800) [7055]
- •4.2.2.7. Фенилкетонурия: пример успешного лечения метаболического заболевания [182; 203]
- •4.2.2.8. Выявление гетерозигот
- •4.2.2.9. Лечение наследственных метаболических заболеваний [1289; 1057; 1058]
- •4.2.2.10. Необнаруженные дефекты ферментов
- •4.3. Гемоглобин человека [119; 31; 97а]
- •4.3.1. История изучения гемоглобина
- •4.3.2. Генетика гемоглобина
- •4.3.4. Талассемии [31; 972; 138; 1253; 222; 97а]
- •4.3.5. Популяциоииая генетика генов гемоглобина (см. [972], разд. 6.1.2.3)
- •4.3.6. Пренатальная диагностика гемоглобинопатии [966; 2269; 2322; 2361]
- •4.4. Генетика антител и системы антиген/рецептор
- •4.5. Фармакогенетика и экогенетика 4.5.1. Фармакогенетика
- •4.5.2. Экогенетика [143; 969; 1228; 1250]
- •4.6. Механизм аутосомной доминантности
- •4.6.1. Аномальная агрегация субъединиц
- •4.6.2. Аномальные субъединицы нарушают функции мультимерных белков
- •4.6.3. Аномальное ингибирование ферментов по типу обратной связи и структурно аномальные ферменты
- •4.6.4. Мутации рецепторов
- •4.6.5. Наследственные дефекты клеточных мембран
- •4.6.6. Накопление аномальных фибриллярных белков: наследственные амилоидозы (10480 10525) [1102]
- •4.6.7. Доминантно наследуемые опухолевые заболевания
- •4.7. Генетика эмбрионального развития
- •4.7.1. Активность генов в раннем развитии
- •4.7.2. Поздние стадии эмбрионального развития; фенокопии
- •4.7.3. Регуляция активности генов у бактерий и эукариот
- •4.7.4. Соотношения генотипа и фенотипа при хромосомных аберрациях у человека [1176]
- •4.7.4.1. Эффект дозы генов при трисомиях и картирование генов
- •4.7.4.2. Другие биохимические аномалии при хромосомных аберрациях
- •4.7.4.3. Изучение хромосомных аберраций на уровне клеток
- •4.7.5. Определение поля
- •5. Мутации
- •5.1. Спонтанные мутации
- •5.1.1. Генетические изменения, обусловленные мутациями de novo
- •5.1.2. Геномные и хромосомные мутации у человека
- •5.1.2.1. Частота возникновения мутаций (скорость мутирования)
- •5.1.2.2. Нерасхождение хромосом и возраст матери
- •5.1.2.3. У какого пола и в каком из мейотических делений происходит нерасхождение хромосом?
- •5.1.2.4. Нерасхождение, хромосомные варианты и сателлитные ассоциации
- •5.1.3. Генные мутации: анализ на фенотипическом уровне
- •5.1.3.1. Методы оценки частот мутаций
- •5.1.3.2. Результаты оценки частот мутаций
- •5.1.3.3. Частота мутаций и возраст отца
- •5.1.3.4. Возможные различия частот возникновения мутаций у индивидов разного пола
- •182 5. Мутации
- •5.1.3.5. Герминативноклеточные и соматоклеточные мозаики по доминантным и х-сцепленным мутациям
- •5.1.4. Генные мутации: анализ на молекулярном уровне
- •5.1.4.1. Частоты кодонных мутаций
- •5.1.4.2. Проблема оценки общей частоты мутаций на геном и на поколение
- •5.1.4.3. Мутации в гемоглобиновых генах и генетический код
- •5.1.4.4. Мутации у микроорганизмов: их вклад в понимание механизма мутаций у человека
- •5.1.5. Изучение генных мутаций в отдельных клетках
- •5.1.6. Соматические мутации
- •5.1.6.1. Образование мозаиков по геномным мутациям
- •5.1.6.2. Наследственные синдромы с повышенной нестабильностью хромосом [1465; 1464; 1634]
- •5.1.6.3. Молекулярные механизмы хромосомной нестабильности и образование опухоли, обусловленное соматической мутацией
- •5.1.6.4. Другие факты, свидетельствующие о роли соматической мутации в механизме канцерогенеза [1520]
- •5.1.6.5. Онкогены [1686; 1690, 1691, 1696}
- •5.1.6.6. Рак у человека с точки зрения генетики
- •5.1.6.7. Соматические мутации и старение
- •5.2. Мутации, индуцированные облучением и химическими мутагенами
- •5.2.1. Мутации, индуцированные радиацией
- •5.2.1.1. Основные факты и проблемы, поставленные в ходе их анализа
- •5.2.1.2. Проблема оценки генетического риска, обусловленного радиацией и другими мутагенными факторами окружающей среды
- •5.2.1.3. Результаты изучения мутагенного действия радиации на млекопитающих [1377]
- •5.2.1.4. Облучение популяции человека ионизирующей радиацией
- •5.2.1.5. Насколько может увеличиться частота возникновения спонтанных мутаций9
- •Данные о соматических хромосомных мутациях, возникающих под воздействием радиации.
- •5.2.2. Химически индуцированные (мутации)
- •5.2.2.1. Суть проблемы
- •5.2.2.2. Исследовательские стратегии при оценке генетического риска, обусловленного химическими мутагенами
- •5.2.2.3. Каким образом химические мутагены действуют на генетический материал?
- •5.2.2.4. Насколько широким является воздействие агента на человеческую популяцию?
- •5.2.2.5. Какого увеличения частоты спонтанных мутаций, обусловленного химическими мутагенами, следует ожидать?
- •6. Популяционная генетика
- •6.1. Описание популяций
- •6.1.1. Закон Харди—Вайнберга: генные частоты
- •6.1.2. Генетический полиморфизм
- •6.1.3. Наследственные болезни
- •6.2. Систематические изменения генных частот: мутации и отбор
- •6.2.1. Естественный отбор
- •6.2.1.1. Математические модели отбора: дарвиновская приспособленность
- •6.2.1.2. Отбор, приводящий к изменению генных частот в одном направлении
- •6.2.1.3. Отбор, приводящий к генетическому равновесию
- •6.2.1.4. Отбор, приводящий к нестабильному равновесию
- •6.2.1.5. Другие формулы отбора
- •6.2.1.6. Отбор, обусловленный инфекционными болезнями [1831; 211]
- •История некоторых инфекционных заболеваний.
- •6.2.1.7. Естественный отбор и история популяций: НbЕ и β-талассемия 1)
- •6.2.1.8. Отбор по системе групп крови аво и другим полиморфным системам
- •6.3. Отклонение от случайного скрещивания
- •6.3.1. Кровнородственные браки
- •6.3.1.1. Коэффициент инбридинга [103]
- •6.3.1.2. Инбридинг, размер изолята и наследственные заболевания
- •6.3.2. Концепция генетического груза
- •6.3.2.1. Теория
- •6.3.2.2. Практическое применение теории
- •6.3.2.3. Критическая оценка
- •6.3.2.4. Более прямые подходы к оценке числа рецессивных генов на индивид
- •6.3.3. Дифференциация субпопуляций: генетическое расстояние
- •6.3.4. Поток генов
- •6.4. Случайные флуктуации генных частот
- •6.4.1. Генетический дрейф
- •6.4.2. Генетический дрейф в сочетании с мутационным процессом и отбором
- •Оглавление
- •Глава 4 Действие генов 5
- •Глава 5. Мутации 142
- •Глава 6. Популяционная генетика 278
- •Электронное оглавление
- •4. Действие генов 5
- •4.1. Развитие менделевской парадигмы 5
- •4.2. Гены и ферменты 8
- •4.7. Генетика эмбрионального развития 126
- •5. Мутации 142
- •5.1. Спонтанные мутации 142
- •5.2. Мутации, индуцированные облучением и химическими мутагенами 222
- •6. Популяционная генетика 278
- •6.1. Описание популяций 279
- •6.2. Систематические изменения генных частот: мутации и отбор 294
- •6.3. Отклонение от случайного скрещивания 339
- •6.4. Случайные флуктуации генных частот 367
6. Популяционная генетика
Популяционная генетика отвечает на вопросы о том, как реализуются законы Менделя на уровне популяций, как влияют на генетическую структуру популяций такие факторы, как мутационный процесс, отбор, миграции, случайное изменение генных частот. Знание популяционной генетики необходимо для понимания эпидемиологии наследственных болезней, для планирования мероприятий по предупреждению неблагоприятного воздействия на генетичекий аппарат факторов окружающей среды. Еще одна сфера приложения популяционно-генетических исследований - теория эволюции, обоснование тенденций биологической эволюции человечества в связи с различными изменениями окружающей среды. Преимуществом популяций человека как «объекта» генетических исследований является то, что они описаны гораздо лучше и полнее, чем популяции любого другого вида.
В работах Р. А. Фишера, Дж. Б. С. Холдейна, С. Райта и их последователей были подробно разработаны теоретические основы популяционной генетики. Однако получение и интерпретация эмпирических данных по генетике популяций человека отстает от математических и теоретических разработок (Lewontin, 1977 [1808]) 1). Существует несколько прекрасных обзоров по популяционной генетике (Li, 1955 [124]; Li, 1976 [1810] 2); Crow, Kimura, 1970 [45]; Cavalli-Sforza, Bodmer, 1971 [36]; Jacquard, 1974, [103]; Hartl, 1980 [93a]; Ewens, 1980 [1757]). Поэтому мы не будем обсуждать теоретические вопросы в полном объеме, а обратим внимание читателей на эмпирические данные, полученные для популяций человека, и их интерпретацию.
Исследования в области популяционной генетики человека можно условно разделить на две группы: 1) описание популяций и их генетического состава; 2) анализ причин изменения генофонда человека. Эти два подхода тесно взаимосвязаны. Разработка конкретных гипотез и планирование исследований для их проверки невозможны без наличия данных об основах популяционной структуры. Но, поскольку число существующих популяций и известных наследственных признаков человека исключительно велико, охарактеризовать все популяции с генетической точки зрения невероятно трудно. Необходимо выделить наиболее важные задачи. Каковы же принципы их выбора?
Вообще говоря, планирование научных исследований в области популяционной генетики человека должно основываться на принципах, сходных с принципами планирования лабораторных экспериментов. Эмпирические данные, полученные без конкретной гипотезы, редко дают значимые результаты. Качество научной работы обычно зависит от глубины и характера принимаемой гипотезы. Конечно, не всегда сбор данных проводят, руководствуясь конкретной гипотезой. Однако работа, направленная только на сбор материала, оказывается обычно менее ценной с научной точки зрения, чем исследования, в которых пытаются найти ответ на поставленный вопрос. Существует множество источников первичных данных.
1. Обнаруживаются все новые случаи полиморфизма ДНК, ферментов и других белков. Определение частот соответствующих генов в популяционных выбор-
1) Имеется перевод: Левонтин Р. Генетические основы эволюции.-М.: Мир, 1978.
2) Имеется перевод: Ли. Ч. Введение в популяционную генетику.-М.: Мир, 1978.
6. Популяционная генетика 279
ках дает сведения относительно этих вновь открытых признаков, позволяет проводить анализ по другим генетическим маркерам, получая таким образом данные для определения популяционной структуры.
2. Изучение популяций может проводиться в медицинских целях. Например, в настоящее время во многих странах стала обычной проверка новорожденных на фенилкетонурию, а иногда и на другие более редкие наследственные заболевания. Из этих данных можно извлечь ценную информацию по межпопуляционным различиям генных частот. Большой научный интерес могут иметь результаты семейного анализа в случае сомнительного отцовства.
3. Данные по генным частотам могут быть получены при проверке конкретной гипотезы. Они полезны даже в том случае, когда гипотеза отвергается или результаты исследования неоднозначны.
Определение частот полиморфных генов и наследственных заболеваний - это только первый шаг на пути изучения межпопуляционных различий генных частот. Для объяснения этих различий необходимо сформулировать соответствующую гипотезу.
Рассмотрим, например, гипотезу о том, что более высокая частота активности кишечной лактазы у взрослых людей белой расы по сравнению с таковой у негров и монголоидов обусловлена их селективным преимуществом в климатических условиях, обеспечивающих развитие дефицита витамина D и рахита, поскольку лактаза способствует усвоению кальция в кишечнике, а кальций уменьшает риск заболевания рахитом (разд. 7.3.1). Эта гипотеза имеет биологический смысл, конкретна и может быть легко опровергнута, если показать, что лактаза не повышает усвоения кальция. Формулировка гипотез такого рода весьма желательна. К сожалению, многие исследования в популяционной генетике человека остаются на описательном уровне.
