- •Фогель ф., Мотульски а. Генетика человека: в 3-х т. Т. 2: Пер. С англ. – м.: Мир, 1990. – 378 с.
- •Ф. Фогель, а.Мотульски генетика человека
- •4. Действие генов
- •4.1. Развитие менделевской парадигмы
- •4.2. Гены и ферменты
- •4.2.1. Гипотеза «один ген – один фермент»
- •Модель Бидла и Татума. Статья этих исследователей начиналась так:
- •4.2.2. Гены и ферменты у человека: современный уровень знаний
- •4.2.2.1. Обнаружение и анализ ферментативных нарушений
- •4.2.2.2. Типичные нарушения функций ферментов: ферменты эритроцитов
- •4.2.2.3 Мукополисахаридозы
- •4.2.2.5. Влияние кофакторов на активность ферментов [182]
- •4.2.2.6. Сцепленная с х-хромосомой недостаточность гипоксантин-гуанин—фосфорибозилтрансферазы (30800) [7055]
- •4.2.2.7. Фенилкетонурия: пример успешного лечения метаболического заболевания [182; 203]
- •4.2.2.8. Выявление гетерозигот
- •4.2.2.9. Лечение наследственных метаболических заболеваний [1289; 1057; 1058]
- •4.2.2.10. Необнаруженные дефекты ферментов
- •4.3. Гемоглобин человека [119; 31; 97а]
- •4.3.1. История изучения гемоглобина
- •4.3.2. Генетика гемоглобина
- •4.3.4. Талассемии [31; 972; 138; 1253; 222; 97а]
- •4.3.5. Популяциоииая генетика генов гемоглобина (см. [972], разд. 6.1.2.3)
- •4.3.6. Пренатальная диагностика гемоглобинопатии [966; 2269; 2322; 2361]
- •4.4. Генетика антител и системы антиген/рецептор
- •4.5. Фармакогенетика и экогенетика 4.5.1. Фармакогенетика
- •4.5.2. Экогенетика [143; 969; 1228; 1250]
- •4.6. Механизм аутосомной доминантности
- •4.6.1. Аномальная агрегация субъединиц
- •4.6.2. Аномальные субъединицы нарушают функции мультимерных белков
- •4.6.3. Аномальное ингибирование ферментов по типу обратной связи и структурно аномальные ферменты
- •4.6.4. Мутации рецепторов
- •4.6.5. Наследственные дефекты клеточных мембран
- •4.6.6. Накопление аномальных фибриллярных белков: наследственные амилоидозы (10480 10525) [1102]
- •4.6.7. Доминантно наследуемые опухолевые заболевания
- •4.7. Генетика эмбрионального развития
- •4.7.1. Активность генов в раннем развитии
- •4.7.2. Поздние стадии эмбрионального развития; фенокопии
- •4.7.3. Регуляция активности генов у бактерий и эукариот
- •4.7.4. Соотношения генотипа и фенотипа при хромосомных аберрациях у человека [1176]
- •4.7.4.1. Эффект дозы генов при трисомиях и картирование генов
- •4.7.4.2. Другие биохимические аномалии при хромосомных аберрациях
- •4.7.4.3. Изучение хромосомных аберраций на уровне клеток
- •4.7.5. Определение поля
- •5. Мутации
- •5.1. Спонтанные мутации
- •5.1.1. Генетические изменения, обусловленные мутациями de novo
- •5.1.2. Геномные и хромосомные мутации у человека
- •5.1.2.1. Частота возникновения мутаций (скорость мутирования)
- •5.1.2.2. Нерасхождение хромосом и возраст матери
- •5.1.2.3. У какого пола и в каком из мейотических делений происходит нерасхождение хромосом?
- •5.1.2.4. Нерасхождение, хромосомные варианты и сателлитные ассоциации
- •5.1.3. Генные мутации: анализ на фенотипическом уровне
- •5.1.3.1. Методы оценки частот мутаций
- •5.1.3.2. Результаты оценки частот мутаций
- •5.1.3.3. Частота мутаций и возраст отца
- •5.1.3.4. Возможные различия частот возникновения мутаций у индивидов разного пола
- •182 5. Мутации
- •5.1.3.5. Герминативноклеточные и соматоклеточные мозаики по доминантным и х-сцепленным мутациям
- •5.1.4. Генные мутации: анализ на молекулярном уровне
- •5.1.4.1. Частоты кодонных мутаций
- •5.1.4.2. Проблема оценки общей частоты мутаций на геном и на поколение
- •5.1.4.3. Мутации в гемоглобиновых генах и генетический код
- •5.1.4.4. Мутации у микроорганизмов: их вклад в понимание механизма мутаций у человека
- •5.1.5. Изучение генных мутаций в отдельных клетках
- •5.1.6. Соматические мутации
- •5.1.6.1. Образование мозаиков по геномным мутациям
- •5.1.6.2. Наследственные синдромы с повышенной нестабильностью хромосом [1465; 1464; 1634]
- •5.1.6.3. Молекулярные механизмы хромосомной нестабильности и образование опухоли, обусловленное соматической мутацией
- •5.1.6.4. Другие факты, свидетельствующие о роли соматической мутации в механизме канцерогенеза [1520]
- •5.1.6.5. Онкогены [1686; 1690, 1691, 1696}
- •5.1.6.6. Рак у человека с точки зрения генетики
- •5.1.6.7. Соматические мутации и старение
- •5.2. Мутации, индуцированные облучением и химическими мутагенами
- •5.2.1. Мутации, индуцированные радиацией
- •5.2.1.1. Основные факты и проблемы, поставленные в ходе их анализа
- •5.2.1.2. Проблема оценки генетического риска, обусловленного радиацией и другими мутагенными факторами окружающей среды
- •5.2.1.3. Результаты изучения мутагенного действия радиации на млекопитающих [1377]
- •5.2.1.4. Облучение популяции человека ионизирующей радиацией
- •5.2.1.5. Насколько может увеличиться частота возникновения спонтанных мутаций9
- •Данные о соматических хромосомных мутациях, возникающих под воздействием радиации.
- •5.2.2. Химически индуцированные (мутации)
- •5.2.2.1. Суть проблемы
- •5.2.2.2. Исследовательские стратегии при оценке генетического риска, обусловленного химическими мутагенами
- •5.2.2.3. Каким образом химические мутагены действуют на генетический материал?
- •5.2.2.4. Насколько широким является воздействие агента на человеческую популяцию?
- •5.2.2.5. Какого увеличения частоты спонтанных мутаций, обусловленного химическими мутагенами, следует ожидать?
- •6. Популяционная генетика
- •6.1. Описание популяций
- •6.1.1. Закон Харди—Вайнберга: генные частоты
- •6.1.2. Генетический полиморфизм
- •6.1.3. Наследственные болезни
- •6.2. Систематические изменения генных частот: мутации и отбор
- •6.2.1. Естественный отбор
- •6.2.1.1. Математические модели отбора: дарвиновская приспособленность
- •6.2.1.2. Отбор, приводящий к изменению генных частот в одном направлении
- •6.2.1.3. Отбор, приводящий к генетическому равновесию
- •6.2.1.4. Отбор, приводящий к нестабильному равновесию
- •6.2.1.5. Другие формулы отбора
- •6.2.1.6. Отбор, обусловленный инфекционными болезнями [1831; 211]
- •История некоторых инфекционных заболеваний.
- •6.2.1.7. Естественный отбор и история популяций: НbЕ и β-талассемия 1)
- •6.2.1.8. Отбор по системе групп крови аво и другим полиморфным системам
- •6.3. Отклонение от случайного скрещивания
- •6.3.1. Кровнородственные браки
- •6.3.1.1. Коэффициент инбридинга [103]
- •6.3.1.2. Инбридинг, размер изолята и наследственные заболевания
- •6.3.2. Концепция генетического груза
- •6.3.2.1. Теория
- •6.3.2.2. Практическое применение теории
- •6.3.2.3. Критическая оценка
- •6.3.2.4. Более прямые подходы к оценке числа рецессивных генов на индивид
- •6.3.3. Дифференциация субпопуляций: генетическое расстояние
- •6.3.4. Поток генов
- •6.4. Случайные флуктуации генных частот
- •6.4.1. Генетический дрейф
- •6.4.2. Генетический дрейф в сочетании с мутационным процессом и отбором
- •Оглавление
- •Глава 4 Действие генов 5
- •Глава 5. Мутации 142
- •Глава 6. Популяционная генетика 278
- •Электронное оглавление
- •4. Действие генов 5
- •4.1. Развитие менделевской парадигмы 5
- •4.2. Гены и ферменты 8
- •4.7. Генетика эмбрионального развития 126
- •5. Мутации 142
- •5.1. Спонтанные мутации 142
- •5.2. Мутации, индуцированные облучением и химическими мутагенами 222
- •6. Популяционная генетика 278
- •6.1. Описание популяций 279
- •6.2. Систематические изменения генных частот: мутации и отбор 294
- •6.3. Отклонение от случайного скрещивания 339
- •6.4. Случайные флуктуации генных частот 367
4.2.2.5. Влияние кофакторов на активность ферментов [182]
Кофакторы ферментов. Активность многих ферментов зависит от присутствия молекул небелковой природы - кофакторов. В их роли могут выступать простые ионы, например Mg2+, или органические соединения. Если кофактор представляет собой сложное соединение, его называют коферментом. Предшественники коферментов (витамины) потребляются с пищей. Как правило, витамины участвуют во многих ферментативных реакциях, и их недостаток в пище вызывает в организме состояние, называемое авитаминозом.
Ослабление функции кофермента может быть связано и с генетическими дефектами
|
Рис. 4.17. Препродинорфин (белок). Leu-энкефалин: L = Туг, Gly, Gly, Phe, Leu; нео-эндорфин: L + Arg, Lys, Tyr, Pro; нео-эндорфин; L + Arg, Lys, Tyr, Pro + Lys; динорфин 1 -8: L + Arg, Arg, He; динорфин 1–17: L + Arg, Arg, Ile + Arg, Pro, Lys, Leu, Lys, Trp, Asp, Asn, Gln. За сигнальной последовательностью, расположенной на N-конце, следует последовательность, обогащенная остатками цистина. Последовательности нейрогормонов расположены вблизи С-конца; они вырезаются из молекулы препродинорфина. Поскольку молекулы эндорфинов и динорфинов крупнее, чем Leu-энкефалинов, логично предположить, что сплайсинг осуществляется в две (по крайней мере) стадии. На первой стадии образуются более длинные молекулы. Затем они подвергаются процессингу с образованием Leuэнкефалинов. (По Frezal et al., 1983.) |
42 4. Действие генов
|
Рис. 4.18. Мутации могут нарушать витамин-зависимые реакции на разных этапах, от транспорта витамина в клетку до образования активного фермента [182]. |
|
Рис. 4.19. Фолиевая кислота. Ее молекула состоит (слева направо) из птеринового кольца, β-аминобензойной кислоты и глутаминовой кислоты. |
поглощения и утилизации витаминов (рис. 4.18). Известно, что витамины всасываются в кишечнике, транспортируются в клетки, где попадают в специфические органеллы. Именно там происходит превращение в кофермент, который в свою очередь должен соединиться с апоферментом с образованием холофермента. Любой из этих этапов может быть нарушен в результате мутации. Механизм поглощения детально изучен для витамина В12 (кобаламина) и фолиевой кислоты; для обоих описаны нарушения транспорта и синтеза кофермента.
Зависимость от фолиевой кислоты (22903, 24930, 22905): нарушение транспорта и синтеза кофермента. Молекула фолиевой кислоты построена из трех компонентов - птеринового кольца, парааминобензойной кислоты и глутаминовой кислоты (рис. 4.19). Фолиевая кислота обычно присутствует в различных продуктах питания в достаточных количествах. Известно пять коферментных форм фолата. Все они участвуют в переносе группировок с одним атомом углерода при синтезе нуклеотидов, метионина, глутаминовой кислоты и серина. Основные этапы поглощения и синтеза витамина следующие
Этап |
Фермент |
1. Превращение полиглутаминовой кислоты в глутаминовую кислоту |
Конъюгирующий фермент (слизистая кишечника, желудок, поджелудочная железа) |
2. Поглощение посредством активного транспорта |
Двенадцатиперстная кишка и тощая кишка (механизм в точности не известен) |
3. Транспорт в ткани |
|
4. Превращение фолата в коферменты: а) восстановление птеринового кольца - образование тетрагидрофолата; |
|
б) образование пяти различных коферментов |
Пять различных ферментативных реакций |
Тетрагидрофолат (ТГФ) выполняет две различные функции:
1. Он служит акцептором β-углеродного атома серина при его расщеплении до глицина. Этот атом углерода формирует
4. Действие генов 43
Таблица 4.8. Врожденные нарушения метаболизма фолиевой кислоты [182] |
|||||
Локализация нарушения |
Природа дефекта |
Проявление дефекта |
Потребность в фолате in vivo |
||
|
концентрация фолата в сыворотке |
мегалобластная анемия |
нарушение функций ЦНС 1) |
||
Всасывание в кишечнике |
Не установлена |
Низкая |
Наблюдается |
Наблюдается |
Нормальная |
Утилизация в тканях |
Недостаточность формиминотрансферазы |
Высокая |
Не наблюдается |
» |
Повышена |
|
Недостаточность циклогидролазы |
» |
» |
» |
– 2) |
|
Недостаточность дигидрофолатредуктазы |
Нормальная |
Наблюдается |
Не наблюдается |
Повышена |
|
Недостаточность N 5, N10-метилтетрагидрофолатредуктазы |
От низкой до нормальной |
Не наблюдается |
Наблюдается |
Повышена |
1) Включает умственную отсталость, психозы, припадки, отклонения в ЭЭГ, атрофию коры головного мозга. 2) Не определялась |
|||||
метиленовый мостик между 5-м и 10-м атомами азота ТГФ с образованием N5,N10-метил-ТГФ, который восстанавливается до N5-метил-ТГФ. 2. ТГФ может превращаться также в N5,N10-метил-ТГФ – предшественник формильной формы кофермента. Формильная и метильная формы кофермента необходимы для ряда реакций переноса группировок с одним атомом углерода при синтезе пуринов, пиримидинов и метионина, а также для циклических превращений производных самой фолиевой кислоты.
Описано по меньшей мере пять наследственных патологических состояний, связанных с недостаточностью транспортных механизмов или механизмов образования коферментов (табл. 4.8). Часть из них характеризуются грубым нарушением функций центральной нервной системы, в том числе умственной отсталостью, в двух случаях наблюдается мегал областная анемия. Общее их свойство заключается в возможности успешного лечения при своевременной постановке диагноза. Например, при нарушении всасывания в кишечнике потребность в фолиевой кислоте не повышена, этот дефект корректируется внутримышечными инъекциями витамина. В трех из четырех известных случаев дефектов ферментов при увеличении количества потребляемой фолиевой кислоты болезнь протекала легче. Однако диагноз был поставлен слишком поздно, поэтому неясно, можно ли предотвратить нарушения центральной нервной системы, если начать лечение достаточно рано.
Вероятно, аномально низкое поглощение или снижение синтеза кофермента оказывают влияние одновременно на многие ферменты, именно на те, для работы которых необходим этот кофермент. С другой стороны, недостаточность на последнем этапе, когда нарушена способность апофермента, связываясь с коферментом, образовывать холофермент, должна приводить к дефекту только одного фермента. Такие нарушения подобны обычным случаям ферментативной недостаточности, рассмотренным ранее.
Зависимость от пиридоксина (витамина В6) (26610). Молекула витамина В6 представляет собой замещенное пиридиновое кольцо. Известно несколько природных
44 4. Действие генов
|
Рис. 4.20. Витамин В6 (пиридоксин). |
форм витамина В6, которые содержатся в самых различных пищевых продуктах (рис. 4.20). Попадая в клетки, предшественники фосфорилируются специфической киназой до пиридоксаль-5'-фосфата или пиридоксамин-5'-фосфата. Эти фосфорилированные производные играют роль коферментов в многочисленных реакциях биосинтеза аминокислот, гликогена, а также жирных кислот с малой длиной цепи. В табл. 4.9 перечислено шесть наследственных патологий, связанных с генетически обусловленной недостаточностью витамина В6. Во всех этих случаях для биохимического и (или) клинического эффекта требуются дозы витамина В6, которые превышают физиологические в 5-50 раз.
В первой строке табл. 4.9 описывается патология, впервые обнаруженная у двух сибсов. Они страдали от припадков, которые не удавалось снять противоэпилептическими препаратами. Судороги, однако, проходили при парентеральном введении высоких доз пиридоксина, которые необходимо было поддерживать у таких больных для предупреждения припадков [182].
В настоящее время обнаружено большое число подобных случаев. Установлено, что заболевание обусловлено нарушением глутаматдекарбоксилазы.
Аналогичные результаты получены при цистатионинурии и ксантуроацидурии. С другой стороны, в многочисленных случаях гомоцистинурии (23620), вследствие недостаточности цистатионин-синтазы чувствительность к витамину В6 не удается объяснить мутацией, изменяющей сродство к коферменту. Точный механизм взаимодействия при этом заболевании остается неизвестным [182].
Помимо упомянутых выше, описан ряд случаев, при которых высокие дозы витамина вызывали улучшение клинического и биохимического состояния больных. Дальнейший анализ этой группы заболеваний должен прояснить механизмы связывания коферментов и их действия и представляет поэтому теоретический интерес. Важен он и для медицинской практики, поскольку подобные патологические состояния поддаются лечению высокими дозами витаминов.
Существует мнение, что эта концепция, обоснованная на примере немногочисленных редких врожденных нарушений метаболизма, применима и к ряду широко распространенных заболеваний, в частности к шизофрении. Так, согласно новому направлению в психиатрии, известному под названием «ортомолекулярная психиатрия», шизофрения обусловлена витаминной недостаточностью и положитель-
Таблица 4.9. Врожденные аминоацидопатии с выраженной недостаточностью витамина В6 [182] |
||
Нарушение |
Главные клинические симптомы |
Поврежденный апофермент |
Младенческие судороги |
Припадки |
Глутаматдекарбоксилаза |
Анемия, зависимая от пиридоксина |
Мелкоклеточная гипохромная анемия |
Не установлен |
Цистатионинурия |
Вероятно, нет |
Цистатионаза |
Ксантуроацидурия |
Умственная отсталость (?) |
Кинурениназа |
Гомоцистинурия |
Эктопия хрусталика, тромбоз кровеносных сосудов; нарушение функций ЦНС |
Цистатионин-синтаза |
Гипероксалурия |
Отложение в почках кристаллов оксалата кальция; почечная недостаточность |
Глиоксилат: а-кетоглутараткарбоксилаза |
4. Действие генов 45
ного эффекта при лечении можно достичь, вводя высокие дозы никотиновой кислоты. Научное обоснование этого утверждения, в настоящее время практически отсутствует.
