- •Фогель ф., Мотульски а. Генетика человека: в 3-х т. Т. 2: Пер. С англ. – м.: Мир, 1990. – 378 с.
- •Ф. Фогель, а.Мотульски генетика человека
- •4. Действие генов
- •4.1. Развитие менделевской парадигмы
- •4.2. Гены и ферменты
- •4.2.1. Гипотеза «один ген – один фермент»
- •Модель Бидла и Татума. Статья этих исследователей начиналась так:
- •4.2.2. Гены и ферменты у человека: современный уровень знаний
- •4.2.2.1. Обнаружение и анализ ферментативных нарушений
- •4.2.2.2. Типичные нарушения функций ферментов: ферменты эритроцитов
- •4.2.2.3 Мукополисахаридозы
- •4.2.2.5. Влияние кофакторов на активность ферментов [182]
- •4.2.2.6. Сцепленная с х-хромосомой недостаточность гипоксантин-гуанин—фосфорибозилтрансферазы (30800) [7055]
- •4.2.2.7. Фенилкетонурия: пример успешного лечения метаболического заболевания [182; 203]
- •4.2.2.8. Выявление гетерозигот
- •4.2.2.9. Лечение наследственных метаболических заболеваний [1289; 1057; 1058]
- •4.2.2.10. Необнаруженные дефекты ферментов
- •4.3. Гемоглобин человека [119; 31; 97а]
- •4.3.1. История изучения гемоглобина
- •4.3.2. Генетика гемоглобина
- •4.3.4. Талассемии [31; 972; 138; 1253; 222; 97а]
- •4.3.5. Популяциоииая генетика генов гемоглобина (см. [972], разд. 6.1.2.3)
- •4.3.6. Пренатальная диагностика гемоглобинопатии [966; 2269; 2322; 2361]
- •4.4. Генетика антител и системы антиген/рецептор
- •4.5. Фармакогенетика и экогенетика 4.5.1. Фармакогенетика
- •4.5.2. Экогенетика [143; 969; 1228; 1250]
- •4.6. Механизм аутосомной доминантности
- •4.6.1. Аномальная агрегация субъединиц
- •4.6.2. Аномальные субъединицы нарушают функции мультимерных белков
- •4.6.3. Аномальное ингибирование ферментов по типу обратной связи и структурно аномальные ферменты
- •4.6.4. Мутации рецепторов
- •4.6.5. Наследственные дефекты клеточных мембран
- •4.6.6. Накопление аномальных фибриллярных белков: наследственные амилоидозы (10480 10525) [1102]
- •4.6.7. Доминантно наследуемые опухолевые заболевания
- •4.7. Генетика эмбрионального развития
- •4.7.1. Активность генов в раннем развитии
- •4.7.2. Поздние стадии эмбрионального развития; фенокопии
- •4.7.3. Регуляция активности генов у бактерий и эукариот
- •4.7.4. Соотношения генотипа и фенотипа при хромосомных аберрациях у человека [1176]
- •4.7.4.1. Эффект дозы генов при трисомиях и картирование генов
- •4.7.4.2. Другие биохимические аномалии при хромосомных аберрациях
- •4.7.4.3. Изучение хромосомных аберраций на уровне клеток
- •4.7.5. Определение поля
- •5. Мутации
- •5.1. Спонтанные мутации
- •5.1.1. Генетические изменения, обусловленные мутациями de novo
- •5.1.2. Геномные и хромосомные мутации у человека
- •5.1.2.1. Частота возникновения мутаций (скорость мутирования)
- •5.1.2.2. Нерасхождение хромосом и возраст матери
- •5.1.2.3. У какого пола и в каком из мейотических делений происходит нерасхождение хромосом?
- •5.1.2.4. Нерасхождение, хромосомные варианты и сателлитные ассоциации
- •5.1.3. Генные мутации: анализ на фенотипическом уровне
- •5.1.3.1. Методы оценки частот мутаций
- •5.1.3.2. Результаты оценки частот мутаций
- •5.1.3.3. Частота мутаций и возраст отца
- •5.1.3.4. Возможные различия частот возникновения мутаций у индивидов разного пола
- •182 5. Мутации
- •5.1.3.5. Герминативноклеточные и соматоклеточные мозаики по доминантным и х-сцепленным мутациям
- •5.1.4. Генные мутации: анализ на молекулярном уровне
- •5.1.4.1. Частоты кодонных мутаций
- •5.1.4.2. Проблема оценки общей частоты мутаций на геном и на поколение
- •5.1.4.3. Мутации в гемоглобиновых генах и генетический код
- •5.1.4.4. Мутации у микроорганизмов: их вклад в понимание механизма мутаций у человека
- •5.1.5. Изучение генных мутаций в отдельных клетках
- •5.1.6. Соматические мутации
- •5.1.6.1. Образование мозаиков по геномным мутациям
- •5.1.6.2. Наследственные синдромы с повышенной нестабильностью хромосом [1465; 1464; 1634]
- •5.1.6.3. Молекулярные механизмы хромосомной нестабильности и образование опухоли, обусловленное соматической мутацией
- •5.1.6.4. Другие факты, свидетельствующие о роли соматической мутации в механизме канцерогенеза [1520]
- •5.1.6.5. Онкогены [1686; 1690, 1691, 1696}
- •5.1.6.6. Рак у человека с точки зрения генетики
- •5.1.6.7. Соматические мутации и старение
- •5.2. Мутации, индуцированные облучением и химическими мутагенами
- •5.2.1. Мутации, индуцированные радиацией
- •5.2.1.1. Основные факты и проблемы, поставленные в ходе их анализа
- •5.2.1.2. Проблема оценки генетического риска, обусловленного радиацией и другими мутагенными факторами окружающей среды
- •5.2.1.3. Результаты изучения мутагенного действия радиации на млекопитающих [1377]
- •5.2.1.4. Облучение популяции человека ионизирующей радиацией
- •5.2.1.5. Насколько может увеличиться частота возникновения спонтанных мутаций9
- •Данные о соматических хромосомных мутациях, возникающих под воздействием радиации.
- •5.2.2. Химически индуцированные (мутации)
- •5.2.2.1. Суть проблемы
- •5.2.2.2. Исследовательские стратегии при оценке генетического риска, обусловленного химическими мутагенами
- •5.2.2.3. Каким образом химические мутагены действуют на генетический материал?
- •5.2.2.4. Насколько широким является воздействие агента на человеческую популяцию?
- •5.2.2.5. Какого увеличения частоты спонтанных мутаций, обусловленного химическими мутагенами, следует ожидать?
- •6. Популяционная генетика
- •6.1. Описание популяций
- •6.1.1. Закон Харди—Вайнберга: генные частоты
- •6.1.2. Генетический полиморфизм
- •6.1.3. Наследственные болезни
- •6.2. Систематические изменения генных частот: мутации и отбор
- •6.2.1. Естественный отбор
- •6.2.1.1. Математические модели отбора: дарвиновская приспособленность
- •6.2.1.2. Отбор, приводящий к изменению генных частот в одном направлении
- •6.2.1.3. Отбор, приводящий к генетическому равновесию
- •6.2.1.4. Отбор, приводящий к нестабильному равновесию
- •6.2.1.5. Другие формулы отбора
- •6.2.1.6. Отбор, обусловленный инфекционными болезнями [1831; 211]
- •История некоторых инфекционных заболеваний.
- •6.2.1.7. Естественный отбор и история популяций: НbЕ и β-талассемия 1)
- •6.2.1.8. Отбор по системе групп крови аво и другим полиморфным системам
- •6.3. Отклонение от случайного скрещивания
- •6.3.1. Кровнородственные браки
- •6.3.1.1. Коэффициент инбридинга [103]
- •6.3.1.2. Инбридинг, размер изолята и наследственные заболевания
- •6.3.2. Концепция генетического груза
- •6.3.2.1. Теория
- •6.3.2.2. Практическое применение теории
- •6.3.2.3. Критическая оценка
- •6.3.2.4. Более прямые подходы к оценке числа рецессивных генов на индивид
- •6.3.3. Дифференциация субпопуляций: генетическое расстояние
- •6.3.4. Поток генов
- •6.4. Случайные флуктуации генных частот
- •6.4.1. Генетический дрейф
- •6.4.2. Генетический дрейф в сочетании с мутационным процессом и отбором
- •Оглавление
- •Глава 4 Действие генов 5
- •Глава 5. Мутации 142
- •Глава 6. Популяционная генетика 278
- •Электронное оглавление
- •4. Действие генов 5
- •4.1. Развитие менделевской парадигмы 5
- •4.2. Гены и ферменты 8
- •4.7. Генетика эмбрионального развития 126
- •5. Мутации 142
- •5.1. Спонтанные мутации 142
- •5.2. Мутации, индуцированные облучением и химическими мутагенами 222
- •6. Популяционная генетика 278
- •6.1. Описание популяций 279
- •6.2. Систематические изменения генных частот: мутации и отбор 294
- •6.3. Отклонение от случайного скрещивания 339
- •6.4. Случайные флуктуации генных частот 367
4.7.3. Регуляция активности генов у бактерий и эукариот
Отрицательная и положительная регуляция. Многие бактериальные гены активны только тогда, когда их экспрессия необходима, а все остальное время они выключены. Экспрессия таких генов контролируется геном-оператором и геном-репрессором. Регуляция этого типа характерна для лактозного оперона Е. coli [1141], в котором три тесно сцепленных структурных гена контролируются подобной системой. Кроме такой отрицательной регуляции существует еще и положительная; в этом случае для инициации транскрипции требуется специфический белок.
Роль регуляторных механизмов. Способность бактерий оптимально использовать различные источники энергии сыграла значительную роль в их эволюции. Контролирующие системы, например лактозный оперон, как раз и нацелены на выполнение этой функции. Бактерии затрачивают энергию на синтез ферментов, расщепляющих лактозу, только в том случае, если в среде имеется лактоза, таким образом благодаря обратной связи энергия не растрачивается попусту.
Циклический AMP используется в метаболизме бактерий для многих целей, в частности для регуляции транскрипции. У высших эукариот, в том числе у человека, он имеет еще одну важную функцию: служит эффектором, опосредующим действие гормонов. Большинство гормонов высших организмов не способно проникать внутрь клетки. Эти гормоны взаимодействуют с соответствующими рецепторами на поверхности клетки, и в результате контакта лиганда и рецептора в клеточной мембране происходят изменения, влияющие на синтез и катаболизм сАМР, который, в свою очередь регулирует транскрипцию.
Важная проблема дифференцировки состоит в том, как клетка того или иного типа «решает», какие именно рецепторы должны быть на поверхности ее мембраны. Существенную роль в эмбриональном развитии играют гормоны. В целом высшие эукариоты, включая человека, нуждаются в гораздо более тонких механизмах регуляции экспрессии генов, чем микроорганизмы. Однако, исходя из принципов эволюционной генетики, можно предположить, что основные принципы регуляции экспрессии и дифференцировки должны иметь сходство. В ходе эволюции происходила многоэтапная адаптация ко все более сложной обстановке, которая требовала изощренной регуляции. Поэтому логично было бы исследовать различные биологические системы, опираясь на выводы теории эволюции и при переходе к более сложным системам соответственно усложнять интерпретации и модели.
Исследования регуляторных механизмов (рецепторов, гормонов, сАМР, других химических модуляторов) развития у высших организмов активно развиваются по различным направлениям. Не последнее
4. Действие генов 131
место среди них занимают молекулярнобиологические подходы. Генетический контроль образования антител обсуждался в разд. 4.4. Это первый пример подробного исследования дифференцировки. Он наглядно показывает, что соответствующие изменения могут происходить на разных уровнях: на уровне перестройки ДНК, транскрипции, молекулярной организации конечного белкового продукта - антитела. Например, растворимая и мембранно-связанная формы IgM отличаются дополнительной аминокислотной последовательностью, позволяющей мембранно-связанным формам IgM «заякориваться» в клеточной мембране. Оба белка кодируются одним локусом, но процессинг первичного транскрипта протекает в этих случаях по-разному.
Один ген может кодировать даже два различных белка. В качестве примера приведем пептидный гормон кальцитонин у крыс [968]. Он обнаруживается в щитовидной железе и гипоталамусе, причем в гипоталамусе ему сопутствует другой полипептид, CGRP (от англ. calcitonin gene-related product - продукт, имеющий отношение к гену кальцитонина). У CGRP и кальцитонина первые 78 аминокислот одинаковы, но общая длина составляет 128 аминокислот. Обе молекулы кодируются одним геном, однако процессинг первичных транскриптов происходит по-разному: из мРНК CGRP вырезается целый экзон и одновременно добавляется другая последовательность (рис. 4.72). Такой вариант процессинга РНК преобладает в гипоталамусе, но не в щитовидной железе, это и определяет дифференциальную экспрессию одного и того же гена в различных тканях. Аналогичный механизм характерен для синтеза соматостатина. В гипофизе человека наряду с нормальным гормоном, состоящим из 191 аминокислоты, присутствует другой, близкий по структуре белок, в котором отсутствует 15 аминокислот в положениях 32-46. В этом же участке начинается второй экзон, его первые 45 нуклеотидов могут функционировать либо как часть экзона, либо как часть интрона.
Вероятно, альтернативный процессинг первичных транскриптов играет очень важную роль в дифференцировке. Однако остается неясным, какой первичный механизм определяет выбор пути процессинга. Возможно, для более глубокого понимания этой проблемы потребуются новые теоретические концепции, позволяющие строить модели и предлагать гипотезы, которые можно экспериментально проверить. Результаты таких проверок позволили бы постепенно модифицировать модель, все более приближая ее к истине. Подобные модели должны, по нашему мнению, сыграть значительную роль в выборе направлений исследований в будущем.
Модель Дэвидсона-Бриттена. Дэвидсон и Бриттен в 1969 г. предложили модель регуляции экспрессии генов у высших организмов [1019]. Авторы логически развили соответствующую модель для микроорганизмов, чтобы учесть более тонкие требования, предъявляемые к регуляции в процессе дифференцировки.
Согласно этой модели, существуют четыре класса генов: гены-продуценты; гены-рецепторы, сцепленные с генами-продуцентами и способные индуцировать транскрипцию при воздействии активаторов, которые кодируются генами-интеграторами; гены-сенсоры, которые служат участками посадки агентов (возможно, гормонов), модулирующих характер экспрессии генома. Эта модель согласуется с данными эмбриологии; например, она учитывает возможность индукции одним геном изменений в ходе дифференцировки, а также интегрированное действие ряда генов в установлении определенного дифференцированного состояния. Модель предусматривает возможность взаимодействия генов на различных уровнях интеграции. Однако за 10 лет существования данной модели было получено слишком мало экспериментальных фактов в ее пользу.
К сожалению, эта модель, как и многие другие, не приближает нас к решению основного вопроса дифференцировки-почему в различных клетках активируются разные наборы генов и почему эти клетки приобретают различные свойства. Уже указывалось, что неодинаковые свойства клеток могут быть обусловлены разным набором рецепторов на их поверхности. Модель Дэвидсона-Бриттена предполагает, что, кроме этого, гомологичные сенсорные участки в разных клетках обладают разной чувствительностью. Но почему тогда у одних клеток есть рецепторы, которых нет у других, и почему их геномы реагируют на разные сигналы? Эти основополагающие вопросы дифференцировки остаются пока без ответа.
132 4. Действие генов
|
Рис. 4.72. Механизм тканеспецифической экспрессии гена кальцитонина. Разветвленная стрелка указывает различие путей процессинга в щитовидной железе и гипоталамусе Некоторые детали остаются гипотетическими, однако гены и конечные продукты (кальцитонин и CGRP) твердо установлены. (По Amara et al, Nature, 298, p. 243, 1982) aa-аминокислота |
4. Действие генов 133
