- •Фогель ф., Мотульски а. Генетика человека: в 3-х т. Т. 2: Пер. С англ. – м.: Мир, 1990. – 378 с.
- •Ф. Фогель, а.Мотульски генетика человека
- •4. Действие генов
- •4.1. Развитие менделевской парадигмы
- •4.2. Гены и ферменты
- •4.2.1. Гипотеза «один ген – один фермент»
- •Модель Бидла и Татума. Статья этих исследователей начиналась так:
- •4.2.2. Гены и ферменты у человека: современный уровень знаний
- •4.2.2.1. Обнаружение и анализ ферментативных нарушений
- •4.2.2.2. Типичные нарушения функций ферментов: ферменты эритроцитов
- •4.2.2.3 Мукополисахаридозы
- •4.2.2.5. Влияние кофакторов на активность ферментов [182]
- •4.2.2.6. Сцепленная с х-хромосомой недостаточность гипоксантин-гуанин—фосфорибозилтрансферазы (30800) [7055]
- •4.2.2.7. Фенилкетонурия: пример успешного лечения метаболического заболевания [182; 203]
- •4.2.2.8. Выявление гетерозигот
- •4.2.2.9. Лечение наследственных метаболических заболеваний [1289; 1057; 1058]
- •4.2.2.10. Необнаруженные дефекты ферментов
- •4.3. Гемоглобин человека [119; 31; 97а]
- •4.3.1. История изучения гемоглобина
- •4.3.2. Генетика гемоглобина
- •4.3.4. Талассемии [31; 972; 138; 1253; 222; 97а]
- •4.3.5. Популяциоииая генетика генов гемоглобина (см. [972], разд. 6.1.2.3)
- •4.3.6. Пренатальная диагностика гемоглобинопатии [966; 2269; 2322; 2361]
- •4.4. Генетика антител и системы антиген/рецептор
- •4.5. Фармакогенетика и экогенетика 4.5.1. Фармакогенетика
- •4.5.2. Экогенетика [143; 969; 1228; 1250]
- •4.6. Механизм аутосомной доминантности
- •4.6.1. Аномальная агрегация субъединиц
- •4.6.2. Аномальные субъединицы нарушают функции мультимерных белков
- •4.6.3. Аномальное ингибирование ферментов по типу обратной связи и структурно аномальные ферменты
- •4.6.4. Мутации рецепторов
- •4.6.5. Наследственные дефекты клеточных мембран
- •4.6.6. Накопление аномальных фибриллярных белков: наследственные амилоидозы (10480 10525) [1102]
- •4.6.7. Доминантно наследуемые опухолевые заболевания
- •4.7. Генетика эмбрионального развития
- •4.7.1. Активность генов в раннем развитии
- •4.7.2. Поздние стадии эмбрионального развития; фенокопии
- •4.7.3. Регуляция активности генов у бактерий и эукариот
- •4.7.4. Соотношения генотипа и фенотипа при хромосомных аберрациях у человека [1176]
- •4.7.4.1. Эффект дозы генов при трисомиях и картирование генов
- •4.7.4.2. Другие биохимические аномалии при хромосомных аберрациях
- •4.7.4.3. Изучение хромосомных аберраций на уровне клеток
- •4.7.5. Определение поля
- •5. Мутации
- •5.1. Спонтанные мутации
- •5.1.1. Генетические изменения, обусловленные мутациями de novo
- •5.1.2. Геномные и хромосомные мутации у человека
- •5.1.2.1. Частота возникновения мутаций (скорость мутирования)
- •5.1.2.2. Нерасхождение хромосом и возраст матери
- •5.1.2.3. У какого пола и в каком из мейотических делений происходит нерасхождение хромосом?
- •5.1.2.4. Нерасхождение, хромосомные варианты и сателлитные ассоциации
- •5.1.3. Генные мутации: анализ на фенотипическом уровне
- •5.1.3.1. Методы оценки частот мутаций
- •5.1.3.2. Результаты оценки частот мутаций
- •5.1.3.3. Частота мутаций и возраст отца
- •5.1.3.4. Возможные различия частот возникновения мутаций у индивидов разного пола
- •182 5. Мутации
- •5.1.3.5. Герминативноклеточные и соматоклеточные мозаики по доминантным и х-сцепленным мутациям
- •5.1.4. Генные мутации: анализ на молекулярном уровне
- •5.1.4.1. Частоты кодонных мутаций
- •5.1.4.2. Проблема оценки общей частоты мутаций на геном и на поколение
- •5.1.4.3. Мутации в гемоглобиновых генах и генетический код
- •5.1.4.4. Мутации у микроорганизмов: их вклад в понимание механизма мутаций у человека
- •5.1.5. Изучение генных мутаций в отдельных клетках
- •5.1.6. Соматические мутации
- •5.1.6.1. Образование мозаиков по геномным мутациям
- •5.1.6.2. Наследственные синдромы с повышенной нестабильностью хромосом [1465; 1464; 1634]
- •5.1.6.3. Молекулярные механизмы хромосомной нестабильности и образование опухоли, обусловленное соматической мутацией
- •5.1.6.4. Другие факты, свидетельствующие о роли соматической мутации в механизме канцерогенеза [1520]
- •5.1.6.5. Онкогены [1686; 1690, 1691, 1696}
- •5.1.6.6. Рак у человека с точки зрения генетики
- •5.1.6.7. Соматические мутации и старение
- •5.2. Мутации, индуцированные облучением и химическими мутагенами
- •5.2.1. Мутации, индуцированные радиацией
- •5.2.1.1. Основные факты и проблемы, поставленные в ходе их анализа
- •5.2.1.2. Проблема оценки генетического риска, обусловленного радиацией и другими мутагенными факторами окружающей среды
- •5.2.1.3. Результаты изучения мутагенного действия радиации на млекопитающих [1377]
- •5.2.1.4. Облучение популяции человека ионизирующей радиацией
- •5.2.1.5. Насколько может увеличиться частота возникновения спонтанных мутаций9
- •Данные о соматических хромосомных мутациях, возникающих под воздействием радиации.
- •5.2.2. Химически индуцированные (мутации)
- •5.2.2.1. Суть проблемы
- •5.2.2.2. Исследовательские стратегии при оценке генетического риска, обусловленного химическими мутагенами
- •5.2.2.3. Каким образом химические мутагены действуют на генетический материал?
- •5.2.2.4. Насколько широким является воздействие агента на человеческую популяцию?
- •5.2.2.5. Какого увеличения частоты спонтанных мутаций, обусловленного химическими мутагенами, следует ожидать?
- •6. Популяционная генетика
- •6.1. Описание популяций
- •6.1.1. Закон Харди—Вайнберга: генные частоты
- •6.1.2. Генетический полиморфизм
- •6.1.3. Наследственные болезни
- •6.2. Систематические изменения генных частот: мутации и отбор
- •6.2.1. Естественный отбор
- •6.2.1.1. Математические модели отбора: дарвиновская приспособленность
- •6.2.1.2. Отбор, приводящий к изменению генных частот в одном направлении
- •6.2.1.3. Отбор, приводящий к генетическому равновесию
- •6.2.1.4. Отбор, приводящий к нестабильному равновесию
- •6.2.1.5. Другие формулы отбора
- •6.2.1.6. Отбор, обусловленный инфекционными болезнями [1831; 211]
- •История некоторых инфекционных заболеваний.
- •6.2.1.7. Естественный отбор и история популяций: НbЕ и β-талассемия 1)
- •6.2.1.8. Отбор по системе групп крови аво и другим полиморфным системам
- •6.3. Отклонение от случайного скрещивания
- •6.3.1. Кровнородственные браки
- •6.3.1.1. Коэффициент инбридинга [103]
- •6.3.1.2. Инбридинг, размер изолята и наследственные заболевания
- •6.3.2. Концепция генетического груза
- •6.3.2.1. Теория
- •6.3.2.2. Практическое применение теории
- •6.3.2.3. Критическая оценка
- •6.3.2.4. Более прямые подходы к оценке числа рецессивных генов на индивид
- •6.3.3. Дифференциация субпопуляций: генетическое расстояние
- •6.3.4. Поток генов
- •6.4. Случайные флуктуации генных частот
- •6.4.1. Генетический дрейф
- •6.4.2. Генетический дрейф в сочетании с мутационным процессом и отбором
- •Оглавление
- •Глава 4 Действие генов 5
- •Глава 5. Мутации 142
- •Глава 6. Популяционная генетика 278
- •Электронное оглавление
- •4. Действие генов 5
- •4.1. Развитие менделевской парадигмы 5
- •4.2. Гены и ферменты 8
- •4.7. Генетика эмбрионального развития 126
- •5. Мутации 142
- •5.1. Спонтанные мутации 142
- •5.2. Мутации, индуцированные облучением и химическими мутагенами 222
- •6. Популяционная генетика 278
- •6.1. Описание популяций 279
- •6.2. Систематические изменения генных частот: мутации и отбор 294
- •6.3. Отклонение от случайного скрещивания 339
- •6.4. Случайные флуктуации генных частот 367
4.6.4. Мутации рецепторов
Рецепторы. На поверхности клеточной мембраны имеется множество рецепторов для гормонов, нейромедиаторов и лекарственных препаратов. Должно существовать множество различных мутаций, нарушающих работу белков-рецепторов [29]. Однако к настоящему времени детально охарактеризованы лишь две группы таких мутаций.
К первой относятся те из них, которые сцеплены с Х-хромосомой и приводят либо к неспособности клеточной поверхности связывать дигидротестостерон, либо к неспособности активировать сайты связывания гормона в ядре. Другая группа мутаций затрагивает функцию связывания клетками комплекса холестерина с липопротеинами низкой плотности [29; 1107]. В кровотоке холестерин переносится главным образом липопротеинами низкой плотности (LDLот англ. low-density lipoprotein). Для связывания таких липопротеинов на поверхности клеток и транспорта комплекса LDL - холестерин путем эндоцитоза на поверхности фибробластов и лимфоцитов имеются особые специализированные структуры: окаймленные пузырьки. Рецепторы LDL (В/Е-рецепторы) связывают только липопротеины, содержащие липопротеин В и липопротеин Е. Эндоцитоз с участием рецепторов представляет собой универсальный механизм транспорта крупных молекул в клетку (для каждого типа молекул существует специальный рецептор). При поглощении комплекса LDL-холестерин в клетке возрастает концентрация холестерина. Это служит сигналом к прекращению синтеза рецепторов LDL. Связывание холестерина и его транспорт внутрь клетки также ингибируются по механизму обратной связи за счет репрессии фермента HMG СоА-редуктазы, который лимитирует скорость всего процесса. Холестерин этерифицируется ацилСоА: холестеринацилтрансферазой (АСАТ). Природа сигналов, осуществляющих запуск этих плейотропных реакций, еще не установлена.
Семейная гиперхолестеринемия [1087; 4440] (рис. 4.71). Семейная гиперхолестеринемия может быть обусловлена приблизительно десятком различных мутаций одного локуса в 19-й хромосоме, которые влияют на работу рецепторов LDL. Эти мутации подразделяются на несколько классов: 1) мутации, нарушающие синтез рецепторов; 2) мутации, нарушающие транспорт синтезированного рецептора на клеточную поверхность; 3) мутации, нарушающие связывание с LDL; 4) мутации, препятствующие компартментализации; 5) мутации, нарушающие образование кластеров рецепторов в окаймленных пузырьках. Любая из этих мутаций может вызвать тот или иной дефект или полное отсутствие рецепторной функции. Примерно 1/500 часть людей гетерозиготна по наследственной гиперхолестеринемии. У таких индивидов нормальна лишь половина LDL-рецепторов, поэтому обычная скорость удаления холестерина из кровотока не достигается. Это приводит к развитию атеросклероза и сердечным приступам в сравнительно молодом возрасте. Около 50% мужчин-гетерозигот к 50 годам приобретают явные признаки ишемической болезни (разд. 3.8.14). Оказалось, однако, что у гетерозигот можно стимулировать работу нормального аллеля и добиться увеличения синтеза рецепторов LDL, вводя секвестранты желчи (например, холестеринамин), удаляющие из кишечника желчные кислоты [593]. Этот терапевтический прием, совместно с лечением мевинолином (аналог субстрата HMG СоА-редуктазы) [722], блокирующим синтез холестерина, позволяет понизить уровень холестерина в крови и таким образом воспрепятствовать развитию ишемической болезни. Секвестранты желчи используются уже много лет и зарекомендовали себя как вполне безопасные препараты.
4. Действие генов 123
|
|
Рис. 4.71. А. Метаболизм холестерина в клетке. Липопротеины низкой плотности (LDL) транспортируют холестерин (вверху справа). LDL связываются рецепторами в окаймленных ямках, которые после этого превращаются в окаймленные пузырьки. Несколько таких пузырьков сливаются, образуя эндосому, в которой LDL отделяется от рецептора, после чего последний возвращается на клеточную мембрану. LDL поглощаются лизосомами, где происходит гидролиз апопротеина В-100 до аминокислот и разрушаются эфирные связи холестерина. Свободный холестерин используется для создания клеточных мембран, стероидных гормонов и желчных кислот. Клетка регулирует уровень холестерина, его повышение вызывает следующие эффекты: 1) ингибируется HMG-CoA-редуктаза, фермент, осуществляющий лимитирующую стадию синтеза холестерина; 2) активируется фермент АСАТ, который катализирует этерификацию холестерина для запасания с жирными кислотами; 3) ингибируется синтез новых рецепторов на уровне транскрипции. Б. Соотношение между концентрацией LDL и характерным возрастом для инфаркта миокарда вследствие коронарного атеросклероза как функция числа рецепторов LDL фибробластов в норме при гомо- и гетерозиготной формах семейной гиперхолестеринемии. |
Число рецепторов LDL на клетку определяли из экспериментов, в которых максимальное связывание LDL измеряли при +4° С у активно растущих фибробластов, лишенных LDL в течение 48 ч [1107]. |
124 4. Действие генов
У гомозигот с дефектным рецептором вследствие очень высокого содержания липидов рано развивается ишемическая болезнь, и, как правило, они умирают в детском возрасте. Впрочем, многие так называемые гомозиготы в сущности являются гетерозиготами-компаундами, несущими две различные мутации по LDL-рецепторам. Тип мутации определяет степень тяжести заболевания, при полном отсутствии рецепторов LDL симптомы более тяжелые, чем при снижении числа рецепторов. Истинным гомозиготам медикаментозное лечение не помогает, в этих случаях необходимы другие подходы, например шунт портальной вены. В одном случае, чтобы обеспечить синтез нормальных рецепторов LDL, больному была сделана трансплантация печени. Действительно, уровень LDL-холестерина у больного снизился.
Доминантная гемолитическая анемия, вызванная повышенной активностью клеточной аденозиндезаминазы (25275) [1934] - дефект рецептора? В одной уникальной родословной 12 из 23 родственников по материнской линии страдали тяжелым гемолизом, однако анемия была выражена слабо, поскольку гемолиз в значительной степени компенсировался эритропоэзом. Активность аденозиндезаминазы в эритроцитах больных была в 45-70 раз выше нормы, а уровень АТР составлял 47% по сравнению с нормой. Уровень других нуклеотидов был понижен примерно в той же степени. Заболевание наследовалось по аутосомно-доминантному типу Гемолитический синдром был обусловлен, очевидно, недостатком адениновых нуклеотидов, которые не могут синтезироваться в безъядерной клетке. Главный фактор, определяющий повышенную активность аденозиндезаминазы, неизвестен, однако можно предполагать, что это мутация в мембранном рецепторе, облегчающая проникновение аденозина в клетку. Ингибиторы транспорта аденозина в клетку подавляют также и активность аденозиндезаминазы. По аналогии с рецепторами LDL, модулирующими активность HMG СоА-редуктазы, можно допустить, что рецептор, участвующий в транспорте аденозина, влияет также на активность аденозиндезаминазы. При нарушении данного механизма регуляции уровень аденозиндезаминазы может возрастать.
