- •Гуманитарная
- •Дистанционное образование
- •Оглавление
- •Дидактический план
- •Литература*
- •Перечень компетенций
- •Тематический обзор*
- •1 Информационные технологии в управлении и моделирование экономических процессов
- •1.1 Информация и управление, информационное общество
- •1.2 Информационные технологии и системы
- •1.3 Применение автоматизированных информационных систем (аис) в экономике
- •1.4 Компьютерное моделирование
- •1.4.1 Классификация и структура компьютерных моделей
- •1.4.2 Формализация и алгоритмизация экономических процессов
- •1.4.3 Кибернетический подход к моделированию процессов управления
- •2 Эволюция аис управления (аису) и систем поддержки принятия управленческих решений
- •2.1 Возникновение и эволюция аису – от пакетной обработки данных до современных корпоративных систем
- •2.2 Цели и задачи аису
- •2.3 Архитектура аису
- •2.3.1 Классификация аису
- •2.3.2 Функциональные подсистемы
- •2.3.3 Обеспечивающие подсистемы (компоненты) аису
- •2.3.4 Поддержка разработки рациональных управленческих решений на базе аису
- •2.4 Интеграционные процессы в аису
- •3 Информационное обеспечение разработки рациональных управленческих решений
- •3.1 Информационные ресурсы и фонды предприятий и организаций
- •3.2 Базы и хранилища данных предприятий и организаций
- •3.3 Накопление, хранение и актуализация информации, обработка данных
- •3.4 Методы и средства создания хранилищ данных
- •3.5 Корпоративные системы анализа деятельности на основе хранилищ данных
- •3.6 Автоматизированные системы поддержки разработки рациональных управленческих решений
- •4 Целеобеспечение процесса принятия решений
- •4.1 Понятие и значение цели в процессе принятия решений
- •4.2 Инновационное целеполагание
- •4.3 Классификация целей в процессе принятия решений
- •5 Проектирование и разработка рациональных управленческих решений на базе имитационного моделирования
- •5.1 Компьютерные имитационные модели
- •5.2 Этапы разработки имитационных моделей
- •5.2.1 Разработка и оценка пригодности модели
- •5.2.2 Планирование и проведение эксперимента
- •5.2.3 Обработка результатов эксперимента
- •5.2.4 Принятие решений
- •5.3 Особенности языков имитационного моделирования и имитационное программирование
- •5.4 Статическая и динамическая структуры модели
- •6 Экспертные системы поддержки разработки рациональных управленческих решений в экономике
- •6.1 Системы искусственного интеллекта и экспертные системы
- •6.2 Структура экспертных систем
- •6.3 Задачи экспертных систем в экономике
- •6.3.1 Базы знаний предприятий и организаций
- •6.3.2 Экспертиза инвестиционных проектов
- •6.3.3 Анализ и прогнозирование финансовых данных
- •6.3.4 Экспертные системы прогнозирования рынка
- •7 Реализация принятых рациональных управленческих решений как оптимальное решение проблем
- •7.1 Реализация решений как управление изменениями
- •7.2 Типология концепций стратегических перемен
- •7.3 Сопротивления изменениям в организациях
- •7.4 Причины и формы сопротивления
- •7.5 Подходы к преодолению сопротивления изменениям
- •7.6 Контроль как фактор оценки рациональности разрабатываемых управленческих решений
- •Задания по формированию компетенций
- •Глоссарий
- •Принятие оптимальных решений в экономике и менеджменте с применением компьютерных технологий юнита 1
1.4.3 Кибернетический подход к моделированию процессов управления
Кибернетическая система – это множество взаимосвязанных объектов (элементов) системы, способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться информацией. Система включает также связи между элементами. Элементы и связи между ними могут обладать свойствами (показателями), каждое из которых может принимать некоторое мно-жество значений. Примеры кибернетических систем: автопилот, биологическая популяция, экономические системы, человеческое общество.
Каждый элемент системы, в свою очередь, может быть системой, которая по отношению к исходной системе является подсистемой. В свою очередь, любая система может быть подсистемой другой системы.
Средой данной системы называется система, состоящая из элементов, не принадлежащих этой системе.
Объединение двух систем есть система, составленная из элементов объединяемых систем.
Пересечение двух систем есть система, состоящая из элементов, принадлежащих одновременно обеим этим системам.
Объединение системы и ее среды – система-универсум.
Пересечение системы и ее среды называется пустой системой. Она не содержит ни одного элемента.
Для того чтобы элементы системы могли воспринимать, запоминать и перерабатывать информацию, они должны обладать изменчивостью, т.е. менять свои свойства. Говорят, что элемент может находиться в разных состояниях. Каждый элемент характеризуется набором показателей. При изменении значения хотя бы одного из показателей элемент переходит в другое состояние, т.е. состояние элемента определяется совокупностью конкретных значений показателей элемента. Система в целом может рассматриваться как элемент, она характеризуется своими показателями и может переходить из одного состояния в другое.
Показатели могут быть числовыми и нечисловыми. Числовые показатели могут быть непрерывными и дискретными. Нечисловые показатели обычно выражают в виде числовых – например, интеллект (коэффициент интеллекта), уровень знаний студента (оценка в баллах), отношение одного человека к другому (социологические индексы).
Элемент может осуществлять воздействие на другие элементы системы, изменяя их состояние. Для перехода элемента из одного состояния в другое требуется определенная энергия (например, при обработке деталей на станке). Если физический процесс воздействия одного элемента на другой дает также энергию для перевода в другое состояние, то на второй элемент осуществляется энергетическое воздействие. Если же указанный процесс дает только сведения о состоянии воздействующего элемента, а энергия для перевода в другое состояние элемента, на который направлено воздействие, берется из иного источника, то на элемент осуществляется информационное воздействие. Говорят, что первый элемент передает сигнал второму элементу. Сигнал (см. п. 1.1) есть сообщение о состоянии элемента. Сообщение – это совокупность сигналов.
Состояние элемента может меняться самопроизвольно или в результате сигналов и воздействий, поступающих извне системы. Сигналы, вырабатываемые элементами системы, могут поступать за пределы системы, в этом случае они называются выходными сигналами системы. В свою очередь, на элементы могут поступать сигналы извне системы, они называются входными. Аналогичным образом определяются входные и выходные воздействия.
Структура системы – это совокупность ее элементов и связей между ними, по которым могут проходить сигналы и воздействия. Входами называются элементы системы, к которым приложены входные воздействия или на которые поступают входные сигналы. Входными показателями назы-ваются те показатели системы, которые изменяются в результате входного воздействия или сигнала.
Выходами называются элементы системы, которые осуществляют воздействие или передают сигнал в другую систему.
Выходными показателями называются те показатели системы, изменения которых вызывают выходное воздействие или выходной сигнал либо сами являются таким воздействием или сигналом.
Состояние системы – это совокупность значений ее показателей. Все возможные состояния системы образуют ее множество состояний. Если в этом множестве определено понятие близости элементов, то оно называется пространством состояний.
Движение (поведение) системы – это процесс перехода системы из одного состояния в другое, из него в третье и т.д. Если переход системы из одного состояния в другое происходит без прохождения каких-либо промежуточных состояний, то система называется дискретной.
Свойства объекта и его поведение зависят от того, каким образом мы его представляем в виде системы. Одним из инструментов исследования объектов для целей выбора оптимальных способов управления является кибернетическое моделирование.
Напомним, что модель – это мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает новую информацию об этом объекте. При моделировании используется аналогия между объектом – оригиналом и его моделью.
Кибернетические модели способны отображать как структуру, так и динамику исследуемых объектов. Для них свойственно то, что они реализуются с помощью ЭВМ. Смысл кибернетического моделирования заключается в том, что эксперименты проводятся не с реальной физической моделью объекта, а с его описанием, которое помещается в память ЭВМ вместе с программами, реализующими изменения показателей объекта, предусмотренные этим описанием.
С описанием производят машинные эксперименты: меняют те или иные показатели, т.е. изменяют состояние объекта и регистрируют его поведение в этих условиях. Часто поведение объекта имитируется во много раз быстрее, чем на самом деле, благодаря быстродействию ЭВМ. Кибернетическую модель часто называют имитационной моделью (см. гл. 4.).
