- •Юнита 6
- •Оглавление
- •Дидактический план
- •Литература*1
- •Перечень компетенций
- •1. Функции нескольких переменных. Дифференциальное исчисление функций нескольких переменных
- •1.1. Функции двух переменных, непрерывность
- •1.1.1. Функции двух переменных
- •1.1.2. Области на плоскости
- •1.1.3. Геометрическое изображение функции двух переменных
- •1.1.4. Линии уровня
- •1.1.5. Предел и непрерывность функции двух переменных
- •1.1.6. Свойства непрерывных функций
- •1.1.7. Приращения независимых переменных и приращение функции
- •1.2. Дифференциальное исчисление функций двух переменных
- •1.2.1. Частные производные
- •1.2.2. Геометрический смысл частных производных
- •1.2.4. Дифференцируемость функции. Полный дифференциал
- •1.2.5. Геометрический смысл полного дифференциала
- •1.2.6. Дифференцирование сложной функции
- •1.2.7. Инвариантность формы записи дифференциала
- •1.2.8. Производные высших порядков
- •1.2.9. Экстремумы функций двух переменных
- •1.2.10. Необходимый признак экстремума
- •1.2.11. Достаточный признак экстремума
- •1.2.12. Наибольшее и наименьшее значения в области
- •1.3. Функции трех и более переменных. Скалярное поле
- •1.3.1. Функция трех переменных
- •1.3.2. Внутренние и граничные точки
- •1.3.3. Поверхности уровня
- •1.3.4. Функции любого числа переменных
- •1.3.5. Предел, непрерывность, частные производные для функции нескольких переменных
- •1.3.6. Касательная прямая и нормаль к графику неявной функции
- •1.3.7. Касательная плоскость и нормаль к поверхности, заданной неявным уравнением
- •1.3.8. Скалярное поле
- •1.3.9. Производная по направлению
- •1.3.10. Градиент скалярного поля
- •2. Дополнительные вопросы приложений дифференциального исчисления к геометрии
- •2.1. Плоские кривые. Кривизна
- •2.1.1. Дифференциал длины дуги
- •2.1.2. Кривизна плоской линии
- •2.1.3. Радиус кривизны. Круг и центр кривизны
- •2.2. Пространственные кривые
- •2.2.1. Векторное уравнение пространственной кривой
- •2.2.2. Касательная к пространственной кривой
- •2.2.3. Нормальная плоскость
- •2.2.4. Дифференциал длины дуги
- •2.2.5. Натуральные уравнения кривой. Главная нормаль
- •2.2.6. Кривизна пространственной кривой
- •2.2.7. Соприкасающаяся плоскость. Бинормаль. Кручение
- •2.2.8. Скорость и ускорение точки, движущейся по кривой
- •2.2.9. О касательной плоскости к поверхности
- •3. Кратные и криволинейные интегралы
- •3.1. Определение кратного интеграла, условие существования и свойства кратного интеграла
- •3.2. Сведение кратного интеграла к повторному
- •3.3. Замена переменных в кратном интеграле
- •3.4. Площадь поверхности
- •3.5. Определение криволинейного интеграла, его свойства
- •3.6. Формула Грина
- •3.7. Определение поверхностного интеграла, его свойства
- •3.8. Формула Стокса
- •3.9. Формула Остроградского–Гаусса
- •3.10. Соленоидальные и потенциальные векторные поля
- •3.11. Геометрические и физические приложения кратных, криволинейных и поверхностных интегралов
- •Задания для самостоятельной работы
- •1. Составьте логическую схему базы знаний по теме юниты:
- •2. Решите самостоятельно следующие задачи: Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •2. Пример выполнения упражнения тренинга на компетенцию 2 Задание
- •Решение
- •3. Пример выполнения упражнения тренинга на компетенцию 3 Задание
- •Решение
- •4. Пример выполнения упражнения тренинга на компетенцию 4 Задание
- •Решение
- •5. Пример выполнения упражнения тренинга на компетенцию 5 Задание
- •Решение
- •6. Пример выполнения упражнения тренинга на компетенцию 6 Задание
- •Решение
- •7. Пример выполнения упражнения тренинга на компетенцию 7 Задание
- •Решение
- •8. Пример выполнения упражнения тренинга на компетенцию 8 Задание
- •Решение
- •Глоссарий
- •Математический анализ юнита 6
2. Пример выполнения упражнения тренинга на компетенцию 2 Задание
Запишите уравнение
касательной плоскости и найдите полный
дифференциал функции
в точке
.
Решение
№ п/п |
Алгоритм |
Конкретное соответствие данного задания предложенному алгоритму |
1 |
Вычислить частные производные , и |
= 2(–1) = – 2;
z0 = –1 |
2 |
Подставить полученные значения в уравнение касательной плоскости
|
|
3 |
Найти полный дифференциал
|
|
Вычислите самостоятельно полный дифференциал следующих функций:
2.1.
в точке
.
2.2.
в точке
2.3.
в точке
Найдите уравнение касательной плоскости следующих функций:
2.4. в точке
2.5.
в точке
3. Пример выполнения упражнения тренинга на компетенцию 3 Задание
Исследуйте на
экстремум функцию
.
Решение
№ п/п |
Алгоритм |
Конкретное соответствие данного задания предложенному алгоритму |
1 |
Найти область определения |
|
2 |
Найти частные производные и |
|
3 |
Найти точки, в которых и равны нулю или не существуют, т.е. критические точки (необходимое условие наличия экстремума) |
Частные производные всюду существуют. Найдем точки, где они равны нулю:
Решив систему, получим координаты точек:
|
4 |
Найти , , |
|
5 |
Вычислить значения частных про-изводных второго порядка в крити-ческих точках |
|
6 |
Использовать достаточное условие наличия экстремума. Составить
и вычислить его значения в крити-ческих точках
|
|
№ п/п |
Алгоритм |
Конкретное соответствие данного задания предложенному алгоритму |
7 |
Сделать вывод о наличии экстре-мума: – экстремум есть; – экстремума нет; – неопределенный случай |
В точках M0 , M1, M2 – экстремума нет; в точке M3 – экстремум есть |
8 |
По знаку второй производной в точке M установить характер экстремума: – точка минимума; – точка максимума |
M3 – точка максимума |
9 |
Вычислить экстремальное значение функции |
|
Исследуйте самостоятельно на экстремум следующие функции:
3.1.
.
3.2.
.
3.3.
.
3.4.
.
3.5.
.

;
;
;