Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
R_11-12.doc
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
572.42 Кб
Скачать

12.2. Середні відсоткові ставки

Якщо відсоткові ставки змінюються з часом, то еквівалентна їм ставка являє собою середню ставку, що приносить за певний період такий самий дохід. Дану середню знай­демо на основі рівності відповідних множників нарощення. Нехай за періоди n1, n2, ..., nk, нараховуються прості відсотки за ставками i1, i2, ..., ik:

де

отримаємо еквівалентну ставку:

Знайдена характеристика являє собою середню зважену ариф­метичну величину з вагами, що відповідають тривалості окремих інтервалів. Ставка i0 дає такий самий дохід за час N, що й сукупність ставок, які змінюються за відповідні періоди. Аналогічно для простих облікових ставок d1, d2, .., dk знаходимо їх середню d0:

Приклад 7. У контракті передбачається нарахування простих відсотків у таких розмірах:

Періоди

Відсоткові ставки

nt (у роках)

nt it

1

0,2

1,5

0,3

2

0,3

1,0

0,3

3

0,4

2,0

0,8

Усього

4,5

1,4

Необхідно знайти еквівалентну цим умовам ставку за умови, що Р = 500.

; S = 500 (1 + 4,5 · 0,3111) = 1199,9 грн.

Якщо нарахування відсотків виконується на основі послідовних фіксованих ставок складних відсотків i1, i2, ..., ik, які нараховуються в інтервалах, що дорівнюють n1, n2, ..., nk одиниць часу, то

.

Отриманий вираз являє собою зважену середню геометричну без одиниці, в якої вагами є тривалість періодів нарахування.

Приклад 8. За контрактом була видана позичка в розмірі 1000 грн. Контракт було укладено на 4 роки. У перші два роки передбачалося нарахування відсотків за ставкою 10 % (складні річні відсотки), у наступні два роки — за ставкою 20 %. За згодою сторін було вирішено замінити всі ставки відсотків однією, не змінивши при цьому фінансових відносин сторін.

Розв’язання: , або 14,9 %.

Якщо в угоді були б використані прості ставки відсотків, тоді еквівалентна їм середня проста ставка відсотків дорівнювала б:

, або 15 %.

Заміна у фінансовій угоді ставок складних відсотків 10 % і 20 % за відповідні періоди часу на ставку 14,9 % або заміна ставок простих відсотків 10 % і 20 % на ставку 15 % не змінює фінансових відносин сторін. Учасникам фінансової угоди байдуже, які з цих ставок використовувати — вони призводять до однієї і тієї ж нарощеної суми.

12.3. Зміна умов контракту. Фінансова еквівалентність зобов’язань

На практиці нерідко зустрічаються випадки, коли необхідно замінити одне фінансове зобов’язання іншим (на­приклад, з віддаленішим строком платежу), об’єднати кілька зобов’язань в одне (консолідувати платежі) тощо. Принцип, виходячи з якого, мають змінювати умови контрактів, називається фінансовою еквівалентністю зобов’язань. Принцип фінансової екві­валентності полягає в тому, що за будь-якої заміни умов контрактів фінансові зобов’язання до і після вказаних змін залишаються однаковими, тобто зберігається незбитковість для обох сторін.

Варіанти заміни одного фінансового зобов’язання іншим:

1) переноситься дата погашення боргу (відстрочка платежу або дострокове погашення);

2) один платіж замінюється кількома з різними термінами сплати;

3) кілька платежів замінюються одним, при цьому переносять кінцеву дату погашення.

Еквівалентними вважаються такі платежі, які за умови зведення за заданою відсотковою ставкою до одного моменту часу є рівними. Приведення різночасових виплачуваних сум грошей здій­снюється шляхом дисконтування (приведення до попередніх дат) або, навпаки, нарощення, якщо ця дата належить до майбутнього.

Принцип фінансової еквівалентності лежить в основі формул нарощення і дисконтування, який пов’язує величини P i S. На цьому принципі базується порівняння різночасових платежів. Не­хай є платежі S1 i S2 зі строками n1 i n2, початок відрахунку строку припадає на один день. Ці платежі еквівалентні, якщо їх сучасні величини, розраховані за однією й тією самою ставкою, рівні.

Приклад 9. Мають місце два зобов’язання. Умови першого: S1 = = 400 тис. грн., n1 = 4 місяця. Умови другого: S2 = 420 тис. грн., n2 = 9 місяців. Чи можна вважати їх рівноцінними? Якщо дисконтувати ці платежі на початок строку за ставкою простих відсотків і = 0,1, отримаємо:

тис. грн.;

тис. грн.

P1 < P2, отже, ці зобов’язання нееквівалентні.

Основний метод при вирішенні фінансової еквівалентності зобов’язань полягає в розробці рівняння еквівалентності, в якому сума платежів, що замінюються, приведені до якого-небудь одного моменту, прирівняні до суми платежів за новим зобов’язан­ням, приведеним до тієї самої дати.

Як правило, розглядається дві постановки задачі щодо зміни умов контрактів:

1) консолідування (об’єднання) заборгованості;

2) збалансування змін строків платежів.

Консолідуванням заборгованості називається об’єднання кіль­кох боргових зобов’язань в одне, а розмір об’єднаного платежу має назву консолідованого платежу.

Нехай платежі S1, S2, ...., Sn зі строками відповідно n1, n2, ..., nm об’єднуються в один у сумі S0 i строком n0. Сума консолідованих платежів за умови, що n0 > n1, n2, ..., nm, для простої ставки відсот­ків складає де tj — часовий інтервал між строками n0 i nj, tj = n0nj.

Для простої облікової ставки:

для складної ставки відсотків:

для складної облікової ставки:

Приклад 10. Два платежі: S1 = 100 тис. грн. і S2 = 50 тис. грн. зі строками 150 і 180 днів (що відраховуються від однієї бази) замінюються одним — зі строком 200 днів. Якщо сторони домовились на зміну при використанні простої відсоткової ставки, що дорівнює 6 % річних, то

тис. грн.

У загальному випадку величину S0 знаходимо як суму нарощених або дисконтованих платежів Sj:

де Sj — сума об’єднаних платежів зі строками nj, nj < n0; Sk — сума платежів, які об’єднуються зі строками nk, nk > n0. Відповідно tj = n0nj; tk = nkn0.

Приклад 11. Вирішено консолідувати 3 платежі зі строками погашення 15.05, 15.06, 15.08, суми платежів — відповідно 10, 20, 15 тис. грн. Строк консолідованого платежу — 01.08. За умовами задачі S1 = 10, S2 = 20, S3 = 15, t1 = 78, t2 = 47, t3 = 14 днів. Враховуючи, що ставка простих відсотків дорівнює 8 %, отримаємо:

тис. грн.

Якщо термін об’єднаного платежу менший за терміни консолідованих платежів, тобто виконується умова, що n0 < n1, n2, ..., nk, тоді для простої ставки відсотків:

, де tk = nk – n0;

для простої облікової ставки:

;

для складної ставки відсотків:

;

для складної облікової ставки:

.

Наступна задача полягає у визначенні строку консолідованого платежу при заданій його сумі. Запишемо рівняння еквівалентності на початкову дату:

.

Позначимо сучасну величину консолідованих платежів як P0:

.

Тоді

Приклад 12. Платежі в розмірі 10, 20, 15 тис. грн. виплачуються через 50, 80, 150 днів після деякої дати. Вирішено замінити їх одним платежем, припустимо, 50 тис. грн. Звичайно, що таке розв’язання ситуації передбачає деяку відстрочку. Знайдемо строк консолідованого платежу за умови, що і = 10 %. За умовами задачі

тис. грн.

Отже,

року, або 301 день.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]